Пусть a, b, c - эти числа. Тогда по свойству геометрической прогрессии: b² = a·c По свойству арифметической прогрессии: 5b/3 = (a + c)/2 b = 3(a + c)/10 b² = 9(a² + 2ac + c²)/100 b² = ac
9(a² + 2ac + c²)/100 = ac 9a² - 82ac + 9c² = 0 разделим на а² 9(c/a)² - 82c/a + 1 = 0 c/a = t 9t² - 82t + 1 = 0 D/4 = 41² - 9·9 = 1681 - 81 = 1600 t = (41+ 40)/9 = 9 t = (41 - 40)/9 = 1/9 c/a = q² q² = 9 или q² = 1/9 q = 3 или -3 q = 1/3 или -1/3 Так как прогрессия возрастающая, подходит одно значение 3
Вниз по реке-это значит, что течение плыть катеру, т.е. полная скорость катера за в это путешествие составляло х+21 км/ч, где х-скорость течения реки. Получается обратно скорость катера была меньше, т.к. течение уже мешало плыть катеру, т.е. обратно скорость катера составляла: 21-х км/ч. Пусть у - это время всего путешествия катера - туда и обратно. Составим уравнение относительно скорости реки "х" и решим его: Путешествие катера из города А в город В: (х+21)m=72 (x-21)n=72 m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда: m=y-n
(х+21)(y-n)=72 (x-21)n=72
Время пути канистры: х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72 (x-21)n=72 х*у=21
x*y-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 x*n-21*n=72 х*у=21
21-x*n+21*y-21*n=72 n(x-21)=72 х*у=21
21-21n+72-21n+21y=72 n(21/y - 21)=72
-42n+21y=-21 :21 n=72/(21/y - 21)
-2n+y=-1 n=72/(21/y - 21)
y=2n-1 n*(21/(2n-1) - 21)=72 n*(21-42n+21)=72(2n-1) -42n²+42n-144n+72=0 -42n²-102n+72=0 -21n²-51n+36=2601+12096=5625 √5625=75 n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной) n2=(51-75)/-42=24/42=12/21
b² = a·c
По свойству арифметической прогрессии:
5b/3 = (a + c)/2
b = 3(a + c)/10
b² = 9(a² + 2ac + c²)/100
b² = ac
9(a² + 2ac + c²)/100 = ac
9a² - 82ac + 9c² = 0 разделим на а²
9(c/a)² - 82c/a + 1 = 0
c/a = t
9t² - 82t + 1 = 0
D/4 = 41² - 9·9 = 1681 - 81 = 1600
t = (41+ 40)/9 = 9 t = (41 - 40)/9 = 1/9
c/a = q²
q² = 9 или q² = 1/9
q = 3 или -3 q = 1/3 или -1/3
Так как прогрессия возрастающая, подходит одно значение 3
Путешествие катера из города А в город В:
(х+21)m=72
(x-21)n=72
m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда:
m=y-n
(х+21)(y-n)=72
(x-21)n=72
Время пути канистры:
х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72
(x-21)n=72
х*у=21
x*y-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
n(x-21)=72
х*у=21
21-21n+72-21n+21y=72
n(21/y - 21)=72
-42n+21y=-21 :21
n=72/(21/y - 21)
-2n+y=-1
n=72/(21/y - 21)
y=2n-1
n*(21/(2n-1) - 21)=72
n*(21-42n+21)=72(2n-1)
-42n²+42n-144n+72=0
-42n²-102n+72=0
-21n²-51n+36=2601+12096=5625
√5625=75
n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной)
n2=(51-75)/-42=24/42=12/21
y=2n-1=2*12/21 - 1=24/21 - 1=8/7 - 1=1 1/7 - 1=1/7 км/ч