Решение: Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет: (а-3)/а Если к числителю прибавим 3, то числитель станет равным: (а-3+3)=а, а к знаменателю прибавим два знаменатель примет значение: (а+2) сама дробь представит в виде: а/(а+2) А так как получившаяся дробь увеличится на 7/40 , составим уравнение: а/(а+2) - (а-3)/а=7/40 Приведём уравнение к общему знаменателю (а+2)*а*40 а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а 40а²- 40*(а²+2а-3а-6)=7*(а²+2а) 40а²-40а²+40а+240=7а²+14а 7а²+14а-40а-240=0 7а²-26а-240=0 а1,2=(26+-D)/2*7 D=√(26²-4*7*-240)=√(676+6720)=√7396=86 а1,2=(26+-86)/14 а1=(26+86)/14=112/14=8 а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи Подставим значение а=8 в дробь (а-3)/а (8-3)/8=5/8
Во первых число, которое дано в задании является радианной мерой угла.
Если начинать отсчет против часовой стрелки (угол положителен), и повернуть на 180 градусов (полуокружность), то в радианах это будет . Т.е. в 180 градусах вмещается приблизительно 3 радиана. Найдем приблизительно, сколько радиан в 90 градусах:
- радиан.
Следовательно при повороте на имеем 4,5 радиан. Значит, 4 радиана находиться где то между . Т.е. в 3 четверти.
2) Найдем количество оборотов на 90 градусов для числа 8:
Т.е. мы делаем полный оборот (он равен приблизительно 4 оборотам на 90 градусов) + один оборот на 90 градусов + оборот на 0.3 радиана. Следовательно 8 находиться в 2 четверти.
3) Здесь мы делаем обороты по часовой стрелке (угол отрицателен). Снова находим количество оборотов :
т.е. приблизительно шесть оборотов по часовой стрелке. Это 1 полный оборот, + оборот на 180 градусов. То есть, -9 радиан находится где то на 3 четверти.
4)
Приблизительно 5,15 полных оборотов. Т.е. 5 полных оборотов + оборот на 0.15 радиан. Т.е. 31 находится где то на 1 четверти.
Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет:
(а-3)/а
Если к числителю прибавим 3, то числитель станет равным:
(а-3+3)=а,
а к знаменателю прибавим два знаменатель примет значение:
(а+2)
сама дробь представит в виде:
а/(а+2)
А так как получившаяся дробь увеличится на 7/40 , составим уравнение:
а/(а+2) - (а-3)/а=7/40
Приведём уравнение к общему знаменателю (а+2)*а*40
а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а
40а²- 40*(а²+2а-3а-6)=7*(а²+2а)
40а²-40а²+40а+240=7а²+14а
7а²+14а-40а-240=0
7а²-26а-240=0
а1,2=(26+-D)/2*7
D=√(26²-4*7*-240)=√(676+6720)=√7396=86
а1,2=(26+-86)/14
а1=(26+86)/14=112/14=8
а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи
Подставим значение а=8 в дробь (а-3)/а
(8-3)/8=5/8
ответ: 5/8
Во первых число, которое дано в задании является радианной мерой угла.
Если начинать отсчет против часовой стрелки (угол положителен), и повернуть на 180 градусов (полуокружность), то в радианах это будет . Т.е. в 180 градусах вмещается приблизительно 3 радиана.
Найдем приблизительно, сколько радиан в 90 градусах:
- радиан.
Следовательно при повороте на
имеем 4,5 радиан.
Значит, 4 радиана находиться где то между . Т.е. в 3 четверти.
2)
Найдем количество оборотов на 90 градусов для числа 8:
Т.е. мы делаем полный оборот (он равен приблизительно 4 оборотам на 90 градусов) + один оборот на 90 градусов + оборот на 0.3 радиана.
Следовательно 8 находиться в 2 четверти.
3)
Здесь мы делаем обороты по часовой стрелке (угол отрицателен).
Снова находим количество оборотов :
т.е. приблизительно шесть оборотов по часовой стрелке.
Это 1 полный оборот, + оборот на 180 градусов.
То есть, -9 радиан находится где то на 3 четверти.
4)
Приблизительно 5,15 полных оборотов. Т.е. 5 полных оборотов + оборот на 0.15 радиан.
Т.е. 31 находится где то на 1 четверти.