Пусть двузначное число N состоит из х десятков и у единиц, т.е. число имеет вид ху, (где х ≠ 0, иначе число было бы однозначным)
и оно может быть записано как сумма разрядных слагаемых N = 10х + у
Тогда составим систему
( х + у)*5 = 10х + у
2.25*ху = 10х + у
5х + 5у = 10х + у
5х = 4у
у = 5х /4
Тогда, подставив у во второе уравнение, получим:
9/4*х*5х /4 = 10х + 5х /4
9х/4* 5х/4 = 10х + 5х/4 |*16
9х* 5х = 160х + 20х
45х² = 180х | : 45
х² = 4х | :х (х ≠ 0)
х = 4
у = 5х /4 = 5*4 /4 = 5
ответ: это число 45.
Пусть двузначное число N состоит из х десятков и у единиц, т.е. число имеет вид ху, (где х ≠ 0, иначе число было бы однозначным)
и оно может быть записано как сумма разрядных слагаемых N = 10х + у
Тогда составим систему
( х + у)*5 = 10х + у
2.25*ху = 10х + у
5х + 5у = 10х + у
5х = 4у
у = 5х /4
Тогда, подставив у во второе уравнение, получим:
9/4*х*5х /4 = 10х + 5х /4
9х/4* 5х/4 = 10х + 5х/4 |*16
9х* 5х = 160х + 20х
45х² = 180х | : 45
х² = 4х | :х (х ≠ 0)
х = 4
у = 5х /4 = 5*4 /4 = 5
ответ: это число 45.
Sn-3,n=156
Sn=350
n-?
3 записи условия дадут нам 3 уравнения, с которыми мы и будем возиться.
1) S4 = 124
(a1 + a4)·4/2 = 124
а1 + а4 = 62
а1 + а1 + 3d = 62
2a1 + 3d = 62 ⇒ 2a1 = 62 - 3d
2) (an-3 + an)·4/2 = 156
a1 +d(n-4) + a1 + d (n-1) 78
2a1 + d( n - 4 + n -1) = 78
2a1 + d(2n -5) = 78
62 -3d + d(2n - 5) = 78
d(-3 +2n - 5) = 78 - 62
d(2n - 8) = 16 ⇒ d = 16/(2n - 8)
3) Sn = 350
(a1 + an)·n/2 = 350
(a1 + a1 + d(n - 1))·n = 700
(2a1 + d(n - 1))·n = 700
( 62 - 3d + d(n -1)·n = 700
(62 +d(-3 + n -1))·n = 700
(62 +d(n - 4))·n = 700
(62 + 16/2(n-4)·(n -4))·n = 700
70n = 700
n = 100