2) Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных.
Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
а) 21х³у³ * (-4/7х) =
=(21 * (-4/7))х⁴у³ =
= -12х⁴у³;
б) -0,25a²b⁴ * (-8ba³) =
=((-0,25) * (-8))a⁵b⁵ =
= 2a⁵b⁵.
3. Упростить:
а) (-0,2ху⁵)³ = -0,008х³у¹⁵;
б) 8х⁵у * (-х³у⁴)⁴ = 8х⁵у * х¹²у¹⁶ = 8х¹⁷у¹⁷.
4)
а) 1/36х²у¹⁶ = (1/6ху⁸)²;
б) -8а¹²b³ = (-2a⁴b)³. скобки в кубе, если плохо видно.
В решении.
Объяснение:
1) 3a³b² = при а= -3; b = -1/3
= 3 * (-3)³ * (-1/3)² =
= 3 * (-27) * 1/9 =
= (3* (-27))/9 = -9.
2) Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных.
Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
а) 21х³у³ * (-4/7х) =
=(21 * (-4/7))х⁴у³ =
= -12х⁴у³;
б) -0,25a²b⁴ * (-8ba³) =
=((-0,25) * (-8))a⁵b⁵ =
= 2a⁵b⁵.
3. Упростить:
а) (-0,2ху⁵)³ = -0,008х³у¹⁵;
б) 8х⁵у * (-х³у⁴)⁴ = 8х⁵у * х¹²у¹⁶ = 8х¹⁷у¹⁷.
4)
а) 1/36х²у¹⁶ = (1/6ху⁸)²;
б) -8а¹²b³ = (-2a⁴b)³. скобки в кубе, если плохо видно.
V₁= 1/t₁ (1 круг за t₁ минут)
t₂= t₁+5
V₂= 1/(t₁+5)
S₂= S₁-1 (кругов)
V₂= S₂/60 <=> 1/(t₁+5) = (S₁-1)/60
S₁= V₁·60 <=> S₁= 60/t₁
1/(t₁+5) = [(60/t₁) -1]/60 <=> (60-t₁)/60t₁ - 1/(t₁+5) =0 <=>
[(60-t₁)(t₁+5) -60t₁] / 60t₁(t₁+5) =0 <=>
---
60t₁ -t₁² +300 -5t₁ -60t₁ =0 <=> t₁² +5t₁ -300 =0 <=>
[ t₁= -20 (t₁>0)
[ t₁=15
---
ответ:
Один карт проходил круг за 15 мин, другой - за 20 мин.