Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Объяснение:
ax²+bx+c=0
1-я горизонтальная строка.
2·(-1,5)²+b·(-1,5)-6=0
2·(-3/2)² -1,5b-6=0
9/2 -1,5b -12/2=0
-3/2 ·b=3/2; b=3/2 ·(-2/3)=-1
2x²-1x-6=0; D=1+48=49
x₂=(1+7)/4=8/4=2
a=2; b=-1; c=-6; x₁=-1,5; x₂=2
2-я горизонтальная строка.
-3·3²-7·3+c=0
-3·9-21+c=0
-27-21+c=0; c=48
-3x²-7x+48=0 |×(-1)
3x²+7x-48=0; D=49+576=625
x₂=(-7-25)/6=-32/6=-16/3=-5 1/3
a=-3; b=-7; c=48; x₁=3; x₂=-5 1/3
3-я горизонтальная строка.
5·0,6²+8·0,6+c=0
5·(3/5)²+8·3/5 +c=0
9/5 +24/5 +c=0; c=-33/5=-6,6
5x²+8x -33/5=0; D=64+132=196
x₁=(-8-14)/10=-22/10=-2,2
a=5; b=8; c=-6,6; x₁=-2,2; x₂=0,6
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше