Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.
Объяснение:
рассмотрим параллельный ряд тонких полос на расстоянии D > d друг от друга
монета размером d попадет внутрь и не заденет полосы с вероятностью (D-d)/D
второй ряд перпендикулярен первому
имеет тот-же размер
монета размером d попадет внутрь второго ряда и не заденет полосы с вероятностью (D-d)/D
так как ряды перпендикулярны то события попадания и непопадания на полосы одного и другого ряда независимы
значит вероятность монеты размером d не пересечь ни одной из сторон квадрата размером D является произведением двух вероятностей
( (D-d)/D ) ^2 = 0,4
( (D-d)/D ) = корень(0,4)
1 - d/D = корень(0,4)
1 - корень(0,4) = d/D
D = d/(1 - корень(0,4) ) ~ 2,7 * d
ответ D ~ 2,7 * d