Объяснение:
y = -x
1) Функция имеет единственный ноль к точке (0, 0)
2) Область определения функции ( -∞ ; +∞)
3) Область значений такая же, т.е. ( -∞ ; +∞)
4) Область определения совпадает с областью значений
5) Функция располагается в 2 и 4 четвертях
6) Функция положительна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент отрицателен
7) Функция отрицательна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент положителен
8) Это монотонно убывающая функция
9) Функция убывает на всей своей области определения
10) Функция не имеет периода
11) График этой функции - прямая, проходящая через центр координат
12) Это нечётная функция
13) Тангенс угла наклона касательной к точке графика постоянен и равен -1 для всех х
14) Площадь под графиком от 0 до х равна
Здесь все свойства функции, выбирайте нужные.
На графике красным - сам график
Голубым подписаны четверти, их подписывать не обязательно.
х≠ℝ
Итак. Найдем область допустимых значений
Х-1/х+2=х-4/х-3=-1, следовательно х≠-2 , х≠3
Переместим выражение в левую часть и изменим его знак
Х-1/х+2 - х-4/х-3 + 1 = 0
Запишем все числителели под одним общим знаменителем. (Х+2)*(х-3)
(Х-3)*(х-1)-(х+2)*(х-4)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Перемножим выражения в скобках
х²-х-3х+3-(х+2)*(х-4)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Затем
х²-х-3х+3-(х²-4х+2х-8)+(х+2)*(х-3) / (х+2)*(х+3) = 0
х²-х-3х+3-(х²-4х+2х-8)+х²-3х+2х-6/(х+2)*(х+3) = 0
Приведем подобные члены:
х²-х-3х+3-х²-2х-8+х²-3х+2х-6/(х+2)*(х+3) = 0
Следовательно из этого получаем следующее, ведь перед нашими скобками стоит знак. Значит мы изменим знак каждого члена в скобках.
х²-х-3х+3-х²+2х+8+х²-3х+2х-6/(х+2)*(х+3) = 0
А поскольку сумма двух противоположных величин
Равна нулю , удалим их из выражения.
-х-3х+3+2х+8+х²-3х+2х-6/(х+2)*(х+3) = 0
-3х+3+8+х²-6/(х+2)*(х-3) = 0
Вычислим сумму и разность:
-3х+5+х²/(х+2)*(х-3) =0
Когда частное выражений равно нулю, то и числитель должен быть равен нулю. Значит
-3х+5+х²=0
Используя переместительный закон Изменим порядок членов.
х²-3х-5=0
Решим квадратное уравнение используя формулу.
Х= -(-3)±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2х+1
Любое выражение умноженное на 1 не изменится.
Х= -(-3)±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2
А когда перед скобками стоит знак,
По правилу изменим знак каждого члена в скобках.
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2
Вычислим степень:
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) 9-4*5(тут заканчивай квадратный корень) / 2
И умножим числа.
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) 9-20(тут заканчивай квадратный корень) / 2
Вычислим разность:
Х= 3±√-11/2(2 без корня)
А так как корень из отрицательного числа не существует на множестве действительных чисел, то
это значит что Дискриминант отрицательный, значит нет решения.
Что и требовалось доказать!
Так же начертил график. Держи данные:
Корень (1,0)
Область определения: х≠-2
Пересечение с осью ординат
(0, - 1/2)
Область определения (вторая)
Х≠3
Пересечение с осью ординат:
(0, 1/3)
Объяснение:
y = -x
1) Функция имеет единственный ноль к точке (0, 0)
2) Область определения функции ( -∞ ; +∞)
3) Область значений такая же, т.е. ( -∞ ; +∞)
4) Область определения совпадает с областью значений
5) Функция располагается в 2 и 4 четвертях
6) Функция положительна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент отрицателен
7) Функция отрицательна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент положителен
8) Это монотонно убывающая функция
9) Функция убывает на всей своей области определения
10) Функция не имеет периода
11) График этой функции - прямая, проходящая через центр координат
12) Это нечётная функция
13) Тангенс угла наклона касательной к точке графика постоянен и равен -1 для всех х
14) Площадь под графиком от 0 до х равна
Здесь все свойства функции, выбирайте нужные.
На графике красным - сам график
Голубым подписаны четверти, их подписывать не обязательно.
х≠ℝ
Объяснение:
Итак. Найдем область допустимых значений
Х-1/х+2=х-4/х-3=-1, следовательно х≠-2 , х≠3
Переместим выражение в левую часть и изменим его знак
Х-1/х+2 - х-4/х-3 + 1 = 0
Запишем все числителели под одним общим знаменителем. (Х+2)*(х-3)
(Х-3)*(х-1)-(х+2)*(х-4)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Перемножим выражения в скобках
х²-х-3х+3-(х+2)*(х-4)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Затем
х²-х-3х+3-(х²-4х+2х-8)+(х+2)*(х-3) / (х+2)*(х+3) = 0
Затем
х²-х-3х+3-(х²-4х+2х-8)+х²-3х+2х-6/(х+2)*(х+3) = 0
Приведем подобные члены:
х²-х-3х+3-х²-2х-8+х²-3х+2х-6/(х+2)*(х+3) = 0
Следовательно из этого получаем следующее, ведь перед нашими скобками стоит знак. Значит мы изменим знак каждого члена в скобках.
х²-х-3х+3-х²+2х+8+х²-3х+2х-6/(х+2)*(х+3) = 0
А поскольку сумма двух противоположных величин
Равна нулю , удалим их из выражения.
-х-3х+3+2х+8+х²-3х+2х-6/(х+2)*(х+3) = 0
Приведем подобные члены:
-3х+3+8+х²-6/(х+2)*(х-3) = 0
Вычислим сумму и разность:
-3х+5+х²/(х+2)*(х-3) =0
Когда частное выражений равно нулю, то и числитель должен быть равен нулю. Значит
-3х+5+х²=0
Используя переместительный закон Изменим порядок членов.
х²-3х-5=0
Решим квадратное уравнение используя формулу.
Х= -(-3)±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2х+1
Любое выражение умноженное на 1 не изменится.
Х= -(-3)±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2
А когда перед скобками стоит знак,
По правилу изменим знак каждого члена в скобках.
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) (-3)²-4*5(тут заканчивай квадратный корень) / 2
Вычислим степень:
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) 9-4*5(тут заканчивай квадратный корень) / 2
И умножим числа.
Х= 3±√(это знак квадратного корня, его продолжай до конца уравнения) 9-20(тут заканчивай квадратный корень) / 2
Вычислим разность:
Х= 3±√-11/2(2 без корня)
А так как корень из отрицательного числа не существует на множестве действительных чисел, то
х≠ℝ
это значит что Дискриминант отрицательный, значит нет решения.
Что и требовалось доказать!
Так же начертил график. Держи данные:
Корень (1,0)
Область определения: х≠-2
Пересечение с осью ординат
(0, - 1/2)
Область определения (вторая)
Х≠3
Пересечение с осью ординат:
(0, 1/3)