2.В равнобедренном треугольнике АВС с основанием АВ высота, опущенная на основание пересекается с биссектрисой угла А в точке О. Найдите углы треугольника, если угол АОВ равен 120 градусам.
3. В равнобедренном треугольнике КРМ один из углов равен 120 градусам. Из вершины Р к основанию КМ проведена высота, равная 14 см. Найдите боковую сторону треугольника КРМ.
1)х²-2х+4.
Находим производную
у´=2х-2
Находим критические точки
2х-2=0
х=1
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
-1+
↘ ↗
у´(0)=2*0-2=-2<0
у´(2)=2*2-2=2>0
т. к. производная в точке х=1 меняет знак с минуса на плюс, следовательно точка х=1, точка минимума и функция в ней принимает минимальное значение
у (1)= 1²-2*1+4=3
т. к. ветви параболы направлены вверх максимальное значение равно +∞
2) -Х²+4Х+2
Находим производную
у´=-2х+4
Находим критические точки
-2х+4=0
х=2
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
+2-
↗ ↘
у´(0)= -2*0+4=4>0
у´(3)= -2*3+4=-2<0
т. к. производная в точке х=2 меняет знак с + на -, следовательно, точка х=2, точка максмума и функция в ней принимает максимальное значение
у (2)= -2²+4*2+2=14
т. к. ветви параболы направлены вниз минимальное значение равно -∞
3) 2Х²+8Х-1
Находим производную
у´=2х+8
Находим критические точки
2х+8=0
х=-4
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
--4+
↘ ↗
у´(-5)=2*(-5)+8=-2<0
у´(0)=2*0+8=8>0
т. к. производная в точке х=-4 меняет знак с минуса на плюс, следовательно точка х=-4, точка минимума и функция в ней принимает минимальное значение
у (-4)= 2(-4)²+8(-4)-1=32-32-1=-1
т. к. ветви параболы направлены вверх максимальное значение равно +∞
4) -3Х²+6Х+2.
Находим производную
у´=-3х+6
Находим критические точки
-3х+6=0
х=2
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
+2-
↗ ↘
у´(0)= -3*0+6=6>0
у´(3)= -3*3+6=-3<0
т. к. производная в точке х=2 меняет знак с + на -, следовательно, точка х=2, точка максмума и функция в ней принимает максимальное значение
у (2)= -3*2²+6*2+2=-12+12+2=2
т. к. ветви параболы направлены вниз минимальное значение равно -∞
Удачи!
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68