1) Число 66790, А={0, 6, 7, 9} - множество цифр числа
Число 40075, В={0, 4, 5, 7} - множество цифр числа
A∩B = {0;7}
2) А - множество делителей числа 24, A={1; 2; 3; 4; 6; 12; 24}
В - множество чисел, кратных числу 6, B={6; 12; 18; 24; 30; 36;...}
A∩B = {6; 12; 24}
3) А -множество однозначный чисел (однозначные числа - это числа, состоящие из одного знака) , A={0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
В- множество составных чисел, (составные числа - это натуральные числа большие 1, не являющиеся простыми числами, т.е. состоящие из произведения двух или нескольких множителей, так 4=2*2, 6=2*3, 8=2*2*2, 9=3*3, 10=2*5 и т.д.)
Объяснение:
1) Число 66790, А={0, 6, 7, 9} - множество цифр числа
Число 40075, В={0, 4, 5, 7} - множество цифр числа
A∩B = {0;7}
2) А - множество делителей числа 24, A={1; 2; 3; 4; 6; 12; 24}
В - множество чисел, кратных числу 6, B={6; 12; 18; 24; 30; 36;...}
A∩B = {6; 12; 24}
3) А -множество однозначный чисел (однозначные числа - это числа, состоящие из одного знака) , A={0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
В- множество составных чисел, (составные числа - это натуральные числа большие 1, не являющиеся простыми числами, т.е. состоящие из произведения двух или нескольких множителей, так 4=2*2, 6=2*3, 8=2*2*2, 9=3*3, 10=2*5 и т.д.)
В={4; 6; 8; 9; 10; 12;...}
A∩B={4; 6; 8}
b₇+b₅=240 .
b₁- ?
q -?
(b₄ -b₂) - ?
* * * * * * * * * * * * * *
{b₁q⁴ -b₁q² =36 ; b₁q⁶ +b₁q⁴ =240.⇔{b₁q²(q² -1)=12*3; b₁q⁴(q² +1) =12*20. ⇒
{ (q²-1) / q²(q² +1) =12*3/12*20 ; b₁ =36/ q²(q² -1) . * * * || q ≠0 ; q² ≠1|| * * *
(q² -1) / q²(q² +1) =3/20 обозн. t = q² >0.
(t - 1)/ t(t +1) =3/20
3t² -17t +20 =0 ⇒[ t=5/3 ; t =4.
a)
q² =5/3 ⇔ q =±√(5/3) и b₁ =36/ q²(q² -1) =36/(5/3)*(2/3) = 32,4.
b₄ -b₂ =b₁q³ -b₁q =b₁q(q² -1) =32,4.*( ±√(5/3) )* (5/3-1) =±7,2√15.
b)
q² =4 ⇔ q = ± 2 и b₁ =36/ 4(4-1) = 3.
b₄ -b₂ =b₁q(q² -1) =3*(±2)*3 = ± 18.
ответ :
а) b₁ = 32,4 ; q =±√(5/3) ; b₄ -b₂ = ±7,2√15 или
b) b₁ = 3 ; q = ± 2 ; b₄ -b₂ = ± 18 .