2. Вычислите координаты точек пересечения прямой 2х + у = -5 с осью х и с осью у.
3.а)Постройте прямую, заданную уравнением у = 2х - 3.
б) Какая из прямых у = 2х , у = 2х + 3 или у = х - пересекает прямую у = 2х - 3? ответ обоснуйте. Постройте эту же прямую в той же системе координат.
4.Вычислите координаты точки пересечения прямых 2х - у = 6 и х + 2у = 8.
5. Запишите уравнение прямой, которая параллельна прямой у = - 2,5х и проходит через точку ( 6; -10). ответ обоснуйте.
6.Прямая проходит через точки (0;6) и ( 15; 1) Составьте уравнение этой прямой.
7. Решите задачу с системы уравнений:
В шести больших и восьми маленьких коробках вместе 116 карандашей, а в трёх больших и десяти маленьких - 118 карандашей. Сколько карандашей в большой коробке и сколько в маленькой?
Первое задание смотрите в комментарии. Не хочу нагромождать решение.
Необходимо найти следующую сумму:
S= 1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1)
Преобразуем выражение:
k^2/(2k-1)(2k+1) = 1/8 * ( 2k/(2k-1) + 2k/(2k+1) ) = 1/8 * ( 1 + 1/(2k-1) + 1 - 1/(2k+1) ) = 1/4 + 1/8( 1/(2k-1) - 1/(2k+1) )
Как видим, данную сумму можно представить так:
S = n/4 + 1/8 * (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-3) - 1/(2n-1) + 1/(2n-1) --1/(2n+1) )
Как видим, все в скобках уничтожится, помимо: 1 - 1/(2n+1)
Откуда сумма ряда:
S = n/4 + 1/8 * ( 1 - 1/(2n+1) ) = n/4 + 1/8 * (2n/(2n+1) ) = n/4 * ( 1 + 1/(2n+1) ) =
= n/4 * ( (2n+2)/(2n+1) = n(n+1)/( 2(2n+1) )
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1) =
= n(n+1)/( 2(2n+1) )
Докажем теперь это методом математической индукции:
Проверим тождество для n = 1
1^2/1*3 = 1*2/( 2* 3)
1/3 = 1/3 - верно.
Предположим, что тождество справедливо при n = t:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) = t(t+1)/( 2(2t+1) )
Докажем его справедливость для n = t + 1, то есть необходимо доказать, что:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) = (t+1)(t+2)/( 2(2(t+1)+1) ) = (t+1)(t+2)/(2*(2t+3) )
Доказываем:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =
= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =
= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2t+1)(2t+3) = 1/2 * (t+1)/(2t+1) * ( t+ (2t+2)/(2t+3) ) =
=1/2 * (t+1)/(2t+1) * ( t + 1 - 1/(2t+3) ) = 1/2 * (t+1)/(2t+1) * ( 2t^2+3t +2t + 3 -1)/(2t+3) = (t+1)(2t^2+5t+2)/(2*(2t+1)(2t+3) ) = (t+1)(t+2)(2t+1)/(2*(2t+1)(2t+3) ) =
= (t+1)(t+2)/(2*(2t+3) ) - верно.
Таким образом, из принципа математической индукции данное тождество доказано.
ответ: V(катера)=4,5 км/час , V(течения)=1,5 км/час .
Скорость катера = х км/час , скорость течения реки = у км/час .
Скорость катера по течению = (х+у) км/час .
Скорость катера против течения = (х-у) км/час .
Скорость катера по течению в 2 раза больше скорости катера против течения , поэтому (х+у) = 2*(х-у) , х+у=2х-2у , 3у=х .
В стоячей воде за 4 часа катер х км .
За 2 часа по течению катер х+у)=2*(3у+у)=2*4у=8у км .
Так как в стоячей воде катер на 4 км больше, чем по течению, то получаем уравнение
4х-6=8у , 4х-8у=6 , 4*3у-8у=6 , 4у=6 ,
у=6/4=3/2=1,5 км/час - скорость течения
х=3*(3/2)=9/2=4,5 км/час - скорость катера