попробую росписать, как найти точки пересечения графика с осями. Расмотрим ось икс: если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график 0=4х-4 или 4х-4=0 4х=0+4 4х=4 х=4:4 х=1 Получается точка с координатами (1; 0)
Рассмотрим ось игрек: если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю. Подставляем: у=4*0-4 у=0-4 у=-4 Иммем еще одну точку (0; -4) Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
попробую росписать, как найти точки пересечения графика с осями.
Расмотрим ось икс:
если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график
0=4х-4
или 4х-4=0
4х=0+4
4х=4
х=4:4
х=1
Получается точка с координатами (1; 0)
Рассмотрим ось игрек:
если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю.
Подставляем:
у=4*0-4
у=0-4
у=-4
Иммем еще одну точку (0; -4)
Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))