В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
TaKuRGRAF
TaKuRGRAF
22.01.2022 09:03 •  Алгебра

2. Яка із пар чисел є розв'язком рівняння 2х – Зу = 18?

Показать ответ
Ответ:
EEEboyyyyy
EEEboyyyyy
28.07.2022 02:25

В.3

1) (7+x)²=49+14x+x²

2) (8-x)²=64-16x+x²

3) 25b²+10bc+c²=(5b+c)²

4) 4z²-20z+25=(2z+5)²

5) 49x²-0.25=(7x-0.5)(7x+0.5)

6) (7x-3)(7x+3)=49x²-9

7) 8x³+64=(2x+4)(4x²-8x+16)

8) 27x³-125=(3x-5)(9x²+15x+25)

9) (x+3)³=x³+9x²+27x+27

10) (4-b)³=64-48b²+12b²-b³

B.4

1) (2y+3)²=4y²+12y+9

2) (3a-1)²=9a²-6a+1

3) 16a²+24ab+9b²=(4a+3b)²

4) 36a²-24ab+4b²=(6a+2b)²

5) 81a⁶-25b⁸=(9a³-5b⁴)(9a³+5b⁴)

6) (4b+5a)(5a-4b)=25a²+16b²

7) 27m³+8n³=(3m+2n)(9m²-6mn+4n²)

8) 64m³-p³=(4m-p)(16m²+4mp+p²)

9) (2a+1)³=8a³+12a²+6a+1

10) (2x-3)³=8x³-36x²+54x-27

В.5

1) (5x+4y)²=25x²+40xy+16y²

2) (8a-5b)²=64a²-80ab+25b²

3) 9x²+42xy+49y²=(3x+7y)²

4) 64x²-48xy+9y²=(8x+3y)²

5) 121x²-0.16y⁴=(11x-0.4y²)(11x+0.4y²)

6) (2n-3m)(3m+2n)=4n²-9m²

7) 125x³+216y³=(5x+6y)(25x²-30xy+32y²)

8) 27a³-64b³=(3a-4b)(9a²+12ab+16b²)

9) (4x+2y)³=64x³+96x²y+48xy²+8y³

10) (5a-3b)³=125a³-225a²b+135ab²-27b³

0,0(0 оценок)
Ответ:
Anna2271
Anna2271
09.04.2021 09:13
1)~ y'=(7x^5+3x^4- \frac{5}{7} x+4)'=35x^4+12x^3-\frac{5}{7} \\ \\ 2)~ y'=(-3 \sqrt{x} + \frac{1}{3} \cos x-0.5ctg x)'=- \frac{3}{2 \sqrt{x} } -\frac{1}{3} \sin x+\frac{1}{2\sin^2x}

3)~ y'=( \sqrt{x} (-2x+1))'= \frac{-2x+1}{2 \sqrt{x} } -2 \sqrt{x} = \frac{-6x+1}{2 \sqrt{x} }

2) Найдите угловой коэффициент касательной к графику функций:
а)  y=-7\cos 3x+2\sin 5x-3 в точке с абсциссой x0=п\3 

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке

y'=(-7\cos 3x+2\sin 5x-3)'=21\sin 3x+10\cos 5x\\ \\ k=y'( \frac{\pi}{3} )=21\sin \frac{3\pi}{3} +10\cos \frac{5\pi}{3} =21\cdot 0+10\cdot(-0.5)=-5

3. Вычислите f'(п\6), если f(x)=2cosx+x^2-пx\3 +5 

f'(x)=(2\cos x+x^2- \frac{ \pi x}{3} +5)'=-2\sin x+2x-\frac{ \pi }{3} \\ \\ f'(\frac{ \pi }{6})=2\sin \frac{ \pi }{6}+2\cdot\frac{ \pi }{6}-\frac{ \pi }{3} =2\cdot0.5+\frac{ \pi }{3} -\frac{ \pi }{3} =1

4. Производная от пути является скорость, т.е. s'(t) = v(t)

v(t)=(t^4-t^2)'=4t^3-2t\\ \\ v(3)=4\cdot 3^3-2\cdot 3=102~ m/s


5. Найдите все значения x, при которых выполняется неравенство f'<0, если f(x)=81x-3x^2
Производная функции: f'(x)=(81x-3x^2)'=81-6x
f'(x)\ \textless \ 0\\ 81-6x\ \textless \ 0\\ \\ -6x\ \textless \ -81\\ \\ x\ \textgreater \ 13.5

6. составьте уравнение касательных к графику функции y=x^4+x^2-2 в точках его пересечения его с осью абсцисс. Найдите точку пересечения этих касательных

Найдем точки пересечения исходной функции с осью Ох:
x^4+x^2-2=0

Решая это уравнение как квадратное уравнение относительно x^2, получим корни

x² = -2 - не удовлетворяет

x² = 1  откуда   x0 = ±1

y'=(x^4+x^2-2)'=4x^3+2x

y'(1)=4\cdot 1^3+2\cdot 1=4+2=6\\ y'(-1)=4\cdot(-1)^3+2\cdot(-1)=-4-2=-6

Найдем теперь эти уравнения касательных
f_1(x)=y'(x_0)(x-x_0)+y(x_0)=6(x-1)+0=6x-6\\ f_2(x)=y'(x_0)(x-x_0)+y(x_0)=-6(x+1)=-6x-6

Приравнивая касательные, найдем точки пересечения касательных

6x-6=-6x-6\\ 12x=0\\ x=0

(1;-6) - пересечение касательных. (см. рисунок).

7. Найдите все значения х, при которых выполняется неравенство f'=0, если f(x)=cos2x+x√3 и x э [0;4п] 

f'(x)=(\cos 2x+x \sqrt{3} )'=-2\sin2x+\sqrt{3} =0\\ \\ \sin2x=\sqrt{3} /2\\ \\ 2x=(-1)^k\cdot \frac{\pi}{3}+ \pi k,k \in \mathbb{Z} \\ \\ x=(-1)^k\cdot \frac{\pi}{6}+ \frac{\pi k}{2} ,k \in \mathbb{Z}

Отбор корней из x ∈ [0;4π]

k=0;~~ x= \frac{ \pi }{6} \\ \\ k=1;~~ x=-\frac{ \pi }{6} +\frac{ \pi }{2} =\frac{ -\pi+3 \pi }{6} =\frac{ \pi }{3} \\ \\ k=2; ~~x=\frac{ \pi }{6} + \pi =\frac{ 7\pi }{6} \\ \\ k=3; ~~ x=-\frac{ \pi }{6} +\frac{ 3\pi }{2} =\frac{ 4\pi }{3} \\ \\ k=4;~~ x=\frac{ \pi }{6} +2 \pi =\frac{ 13\pi }{6}

8.  Докажите, что функция y=(2x+5)^10 удовлетворяет соотношению 8000x^10(2x+5)^15-(y')^3=0


y'=((2x+5)^{10})'=20(2x+5)^9

8000x^{10}(2x+5)^{15}-(y')^3=0\\ \\ y'= \sqrt[3]{8000x^{10}(2x+5)^{15}} =20(2x+5)^5x^{10/3}

Не удовлетворяет. 
Хоть что нибуть найдите производную функции: а)y=7x^5+3x^4-5\7x +4 б)y=-3√x +1\3 cosx -1\2ctgx в)y=√
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота