Пусть первый кран наполнит пустую ванну. за x мин , тогда второй кран опорожнит полную ванну за ( x -6) мин . За минуту первый кран наполнит 1/x часть ванны , второй опорожнит 1/(x-6).часть ванны . Можем составить уравнение : 36*1/(x-6) -36 *1/x = 1; 36x -36(x-6) = x(x-6) ; x² -6x -216 =0 ; x = 3 ± √((3² -(-216) ) =3 ± √225= 3±15 ; x₁ = 3 -15 = -12 (не ответ) x₂ =3+15= 18 (мин).
ответ: Первый кран наполнит пустую ванну за 18 минут ; Второй кран опорожнит полную ванну за 12 минут * * *( 18 -6 )* **
Система уравнений:
x + 5y = 7;
3x + 2y = -5.
Выражаем из первого уравнения системы переменную x через у и получаем следующую систему уравнений:
x = 7 - 5y;
3x + 2y = -5.
Теперь подставим во второе уравнение системы вместо x выражение из первого уравнения системы:
x = 7 - 5y;
3(7 - 5y) + 2y = -5.
Переходим к решению второго уравнения системы:
3 * 7 - 3 * 5y + 2y = -5;
21 - 15y + 2y = -5;
-15y + 2y = -5 - 21;
-13y = -26;
y = -26 : (-13);
y = 2.
Система уравнений:
x = 7 - 5y = 7 - 5 * 2 = 7 - 10 = -3;
y = 2.
ответ: (-3; 2).
Объяснение:
За минуту первый кран наполнит 1/x часть ванны , второй опорожнит
1/(x-6).часть ванны . Можем составить уравнение :
36*1/(x-6) -36 *1/x = 1;
36x -36(x-6) = x(x-6) ;
x² -6x -216 =0 ;
x = 3 ± √((3² -(-216) ) =3 ± √225= 3±15 ;
x₁ = 3 -15 = -12 (не ответ)
x₂ =3+15= 18 (мин).
ответ:
Первый кран наполнит пустую ванну за 18 минут ;
Второй кран опорожнит полную ванну за 12 минут * * *( 18 -6 )* **