Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).
1.
Сумма углов в треугольнике равна 180°
третий угол равен: 180° - 70° - 50° = 60°
2.
Так как один угол в прямоугольном треугольнике равен 90°, значит сумма двух оставшихся тоже 90°.
третий угол равен 90° - 45° = 45°
3.
Треугольник равнобедренный => приледажие к основанию углы равны. Находим:
(180°-80°)/2 = 50° каждый угол
4.
Также равнобедренный треугольник, значит второй угол у основания равен 15°
третий угол: 180° - 2*15° = 150°
5.
Угол, снежный с внешним углом, равен 180° - 120° = 60°, а так как треугольник равнобедренный => все углы по 60°
6.
Треугольник равнобедренный, углы у основания равны => угол ВАС = угол ВСА = 50°
угол АВС = 180° - 2*50° = 80°
Так как АD - биссектриса, значит угол DAC равен 50°/2=25°
Рассмотрим треугольник АDC: угол ADC = 180° - угол DAC - угол ВСА= 180°-25°-50°=105°