216.
Антон и Маша нащли магазин, где все рубашки стоят 20 рублей, все штаны 25 рублей и все куртки 50 рублей. Антон и Маша хотят потратить все свои сбережения на покупку 10 новых видов одежды; рубашек они собираются купить в два раза больше, чем штанов. В общей сложности у ребят есть 245 рублей. Сколько штанов, рубашек и курток можно купить на эти деньги?
Можно купить: 3 штанов, 6 рубашек и 1 куртку.
Объяснение:
Пусть
n - цена рубашки = 20 р; x - кол-во рубашек
m - цена штанов = 25 р; y - кол-во штанов
k - цена куртки = 50 р; z - кол-во курток
S - общая сумма = 245
нужно купить не менее 10 видов (что такое вид из условия не ясно, предположим, что это любой элемент одежды)
x = 2y
n*x + m*y + k*z <= S
n*2y + m*y + k*z <= S
y(2n + m) + kz <= S
y(40 + 25) + 50z <= 245
65y + 50z <= 245
Поскольку купить нужно максимальное кол-во элементов, то сначала купим как можно больше дешёвых элементов (рубашки и штаны), а что останется потратим на дорогие (куртки)
245:65 с остком будет 3 + остаток 50
т.е. y = 3
65*3 + 50z <= 245
195 + 50z <= 245
50z <= 245 - 195
50z <= 50
max z = 1
Таким образом, можно купить: 3 штанов, 6 рубашек и 1 куртку. Всего 10 элементов (видов).