Если первый слиток взять полностью, то 3 = 0,8r - 24
r = 33,75
Если второй слиток взять полностью, то 7 = 32 - 0,8r
r = 31,25
Если ни один слиток не брать полностью, то
31,25 < r < 33,75
ответ 31,25 <= r <= 33,75 (пусть он и напечатан) некорректен, так как при равенстве один из слитков берётся полностью, а в условиях - КУСКИ этих слитков. Кусок слитка не может быть самим слитком; он должен быть хотя бы чуть-чуть меньше.
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
х + у = 8
0,4х + 0,3у = 0,08r
Из первого х = 8 - у, во второе:
3,2 - 0,4у + 0,3у = 0,08r
у = 32 - 0,8r
х = 0,8r - 24
Если первый слиток взять полностью, то 3 = 0,8r - 24
r = 33,75
Если второй слиток взять полностью, то 7 = 32 - 0,8r
r = 31,25
Если ни один слиток не брать полностью, то
31,25 < r < 33,75
ответ 31,25 <= r <= 33,75 (пусть он и напечатан) некорректен, так как при равенстве один из слитков берётся полностью, а в условиях - КУСКИ этих слитков. Кусок слитка не может быть самим слитком; он должен быть хотя бы чуть-чуть меньше.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.