В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tyoma2223333
tyoma2223333
28.12.2020 23:16 •  Алгебра

24. Докажите тождество: на-1=(а-1)(a1+a3+a2+a+1);
2) a-b5=(a+b)(a+ab+a2b2+ab+b4);
3) a®+1=(a+1)(a-a3+а2-а+1);
4) a+b5=(a+b)(a-a3b+a2b2-ab3+b4).
ответьте

Показать ответ
Ответ:
masadropd1
masadropd1
15.12.2022 06:47

4) 3(х -3) - 12х = х² -3х

х² +6х + 9 = 0

х = -3

5) 3х - у =1            у = 3х -1

    ху = 10              х(3х -1) = 10, ⇒  

 ⇒ 3х² -х = 10, ⇒  3х² -х - 10 = 0, ⇒  х = 2           и       х = -10/6

                                                            у = 3*2 -1 = 5       у = 3*(-10/6) -1 = -6

ответ:(2;5);  (-10/6; -6)

6) Пусть скорость моторной лодки в стоячей воде х км/ч

Тогда лодка проплыла:

против течения  28км со  скоростью х - 1  км/ч

по течению  16 км со  скоростью  х + 1 км/ч

28/(х -1) + 16/(х +1) = 3

28(х +1) + 16(х -1) = 3(х²- 1)

3х² -44х -15 = 0

х= 15         х = -1/3( не подходит по условию задачи)

ответ: скорость моторной лодки в стоячей воде 15км/ч

0,0(0 оценок)
Ответ:
alenushka73
alenushka73
08.04.2023 12:03

\frac{\pi+2}{4}

Объяснение:

Сделаем замену переменных:

\sqrt{x} =t \\ x=t^2 \\ dx=2tdt

также сразу заменим пределы интегрирования, чтобы не возвращаться к обратной замене:

нижний предел:

x=1 \ \ \Rightarrow \ \ t=\sqrt{x}=\sqrt{1}=1

Верхний предел:

x\rightarrow \infty \ \ \Rightarrow \ \ t= \sqrt{x}\rightarrow \sqrt{ \infty}= \infty

Получаем:

\int\limits^ \infty_1 {\frac{\sqrt{x}dx }{(1+x)^2} } =\int\limits^\infty_1 {\frac{t*2tdt}{(1+t^2)^2} } =\int\limits^\infty_1 {\frac{2t^2dt}{(1+t^2)^2} } =(*)

Полученный интеграл не является табличным, поэтому для его решения нужно упростить знаменатель:

Когда в знаменателе стоят выражения 1) 1+x² или 2) 1-x² применяют тригонометрическую или гиперболическую замены.

Для первого случая применяют (на выбор): x=tgt; x=ctgt; x=sht.

Для второго: x=sint; x=cost

В нашем случае применим замену (да, еще одну, такое тоже бывает!)

t=tgz; \\ \\ dt=\frac{1}{cos^2z} dz

Также заменим пределы интегрирования:

t=1 \ \ \Rightarrow \ \ 1=tgz \ \ \Rightarrow \ \ z=\frac{\pi }{4} \\ \\ t\rightarrow \infty \ \ \Rightarrow \ \ \infty=tgz \ \ \Rightarrow \ \ z \rightarrow \frac{\pi}{2}

Итого имеем:

(*)=\int\limits^{\frac{\pi}{2} }_{\frac{\pi}{4} } {{\frac{2tg^2z*\frac{1}{cos^2z}dz }{(1+tg^2z)^2} }} = \int\limits^{\frac{\pi}{2} }_{\frac{\pi}{4} } {{\frac{2tg^2zdz}{cos^2z(1+tg^2z)^2} }} =(**)

Учитывая, что 1+tg²z=1/cos²z;  tg²z=sin²z/cos²z; 2sin²z=1-cos(2z)

Получаем:

(**)= \int\limits^{\frac{\pi}{2} }_{\frac{\pi}{4} } {{\frac{2\frac{sin^2z}{cos^2z} dz}{cos^2z(\frac{1}{cos^2z} )^2} }} =\int\limits^{\frac{\pi}{2} }_{\frac{\pi}{4} } {{\frac{2sin^2zdz}{cos^4z\frac{1}{cos^4z}} }} =\int\limits^{\frac{\pi}{2} }_{\frac{\pi}{4} }2sin^2zdz=\int\limits^{\frac{\pi}{2} }_{\frac{\pi}{4} }(1-cos2z)dz= \\ \\ =\lim\limits_{b\rightarrow \frac{\pi}{2}}(z-\frac{1}{2} sin2z)|^b_{\frac{\pi}{4}}=\lim\limits_{b\rightarrow \frac{\pi}{2}}(b-\frac{1}{2} sin2b-\frac{\pi}{4}}+\frac{1}{2}sin\frac{\pi}{2}})=

\frac{\pi}{2}}-\frac{1}{2} sin\pi-\frac{\pi}{2}}+\frac{1}{2}sin\frac{\pi}{2} = \frac{\pi}{2}}-0-\frac{\pi}{4}}+\frac{1}{2}} =\frac{\pi +2}{4}

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота