В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
riborg250000000
riborg250000000
13.03.2020 00:58 •  Алгебра

25^123456789 + 1 , доказать,что делится на 601

Показать ответ
Ответ:
naziraa021
naziraa021
06.10.2020 15:01
Т.к. 123456789=3·41152263, то 
25^{123456789} + 1=(25^{3})^{41152263} + 1, а значит оно делится на 25³+1=15626=26·601.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота