Объяснение:
Чтобы упростить выражение ((x + y)/(x - y) - (x - y)/(x + y)) : xy/(x^2 - y^2) выполним сначала действие в скобках.
Приведем дроби к общему знаменателю. Для этого домножим первую дробь на (х + у), а вторую на (х - у):
(x + y)/(x - y) - (x - y)/(x + y) = ((х + y)^2 - (x - y)^2))/(x^2 - y^2) = (x^2 + 2xy + y^2 - x^2 + 2xy - y^2)/(x^2 - y^2) = 4xy/(x^2 - y^2).
Теперь выполним деление дробей. Как известно при деление дроби на дробь действие деление заменяется умножением и вторая дробь переворачивается.
4xy/(x^2 - y^2) * (x^2 - y^2)/xy = 4.
Объяснение:
Чтобы упростить выражение ((x + y)/(x - y) - (x - y)/(x + y)) : xy/(x^2 - y^2) выполним сначала действие в скобках.
Приведем дроби к общему знаменателю. Для этого домножим первую дробь на (х + у), а вторую на (х - у):
(x + y)/(x - y) - (x - y)/(x + y) = ((х + y)^2 - (x - y)^2))/(x^2 - y^2) = (x^2 + 2xy + y^2 - x^2 + 2xy - y^2)/(x^2 - y^2) = 4xy/(x^2 - y^2).
Теперь выполним деление дробей. Как известно при деление дроби на дробь действие деление заменяется умножением и вторая дробь переворачивается.
4xy/(x^2 - y^2) * (x^2 - y^2)/xy = 4.
Получили два множителя а² и (а² + 4а - 6)
Можно разбить на множители трёхчлен в скобках
Найдём корни трёхчлена в скобках, а для этого решим квадратное уравнение:
а² + 4а - 6 = 0
D = b² - 4ac
D = 4² - 4 · 1 · (-6) = 16 + 24 = 40
√D = √40 = 2√10
а₁ = (-4-2√10)/2 = - 2- √10
а₂ = (-4 + 2√10)/2 = - 2 + √10
Теперь представим (а² + 4а -6) в виде произведения:
а² + 4а - 6 = (а - (-2 - √10))(а+(-2+√10)) =
= (а+2 +√10)(а - 2 +√10).
И, наконец, получим разложение данного многочлена:
a⁴ + 4a³ - 6a² = а²(а² + 4а - 6) =
= а² · (а+2 +√10) · (а - 2 +√10).