(26.) Розкласти на множники (7а-2b)(a+2b) =
(2 б.) Виконати піднесення до
Квадрату:
(2а + 5b) =
1 Добавить файл
. (2.5б.) Виконайте піднесення до квадрата:
а)(4x — 5)2 =
б)(k — 5)? =
(2,5б.) подайте у вигляди многочлена
(3х-2у)²=
(3б.) спростить вираз
(х+4)²-(3х-1)²=
ЧЕМ МОЖЕТЕ
x=4-y²
2) 2-2y=4-y²
x=2-2y
3)y²-2y-2=0
x=2-2y
решим 1 уравнение у²-2у-2=0 D=2²-4*(-2)=12 y=2-√12/2=2-2√3)/2=2*(1-√2)/2=1-√3
y2=2+√12)/2=1+√3
4)y=1-√3 или н=1+√3
х=2-2*(1-√3)=2√3 х=2+2*(1+√3)=2+2+2√3=4+2√3
в)х²+у²=29
у=10/х
2) х²+(10/х)²-29=0
у=10/х решим 1 уравнение Приведем к общему знаменателю получим
х^4-29x²+10=0 пусть х²=n n²-29n+10=0 D=29²-4*1*10=841-40=801=9*89
n1=(29+√801)/2
что-то не так в условии то что написано верно точно
* * * * * f(x) = 9 - (x+1)² * * * * * =(3² - (x+1)² =(3 -x -1)(3+x+1) = - (x+4)(x -2) * * * * *
1. ООФ : ( - ∞ ; ∞) .
2. Функция не четной и не нечетной * * * * * и не периодической * * * * * .
3 Точки пересечения функции с координатными осями :
а) с осью y : x =0⇒ y = 8 ; A(0 ;8) * * * * * -0² -2*0 +8 =8 * * * * *
б) с осью x : y =0 ⇒ - x² -2x +8 =0 ⇔ x² +2x -8 =0 ⇒x₁= -1 - 3 = - 4 ; x₂ = -1 +3 =2 .
B(-4; 0) и C(2;0).
* * * * * D/4 = (2/2)² -(-8) = 9 =3² * * * * *
4. Критические точки функции.
* * * * * значения аргумента (x) при которых производная =0 или не существует) * * * * *
f ' (x) = ( - x² -2x +8 )' = - (x²)' - (2x )' +(8 )' = -2* x - 2(x )' + 0 = -2x - 2 = -2(x+1);
f ' (x) = 0 ⇒ x = -1 (одна критическая точка) .
5. Промежутки монотонности :
а) возрастания :
f ' (x) > 0 ⇔ -2(x+1) > 0 ⇔ 2(x+1) < 0 ⇔ x < -1 иначе x∈( -∞; -1).
б) убывания :
f ' (x) < 0 ⇔ -2(x+1) < 0 ⇔ 2(x+1) > 0 иначе x∈ ( 1 ;∞ ).
6. Точки экстремума:
* * * * * производная меняет знак * * * * *
x = - 1.
7. Максимальное и минимальное значение функции :
Единственная точка экстремума x = - 1 является точкой максимума ,
т.к. производная меняет знак с минуса на плюс .
max(y) = - (-1)² -2(-1) +8 = 9.
8. промежутки выгнутости и выпуклости кривой; найти точки перегиба.
* * * * * f ' ' (x) =0 * * * * *
f ' ' (x) =( f'(x))' =( -2x -2) ' = -2 < 0 ⇒ выпуклая в ООФ здесь R by (-∞; ∞)
не имеет точки перегиба (точки при которых f ' ' (x) = 0 ) .
P.S. y = -x² -2x +8 = 9 -(x+1)² .
График этой функции парабола вершина в точке M(- 1; 9) , ветви направлены вниз , что указано во второй строке решения .
Эту функцию предлагали наверно для "тренировки".