Двузначное число записанное двумя цифрами, например, 68=6·10+8 Поэтому двузначное число, записанное двумя цифрами х и у это 10х + у. Если приписать цифру 2 справа, то получится трёхзначное число 100х + 10у + 2, которое в 9 раз больше задуманного двузначного (10х + у) 100х + 10у + 2 = 9(10х + у) 100х + 10у + 2 = 90х + 9у, 100х-90х+10у-9у = -2 10х+у = - 2 Это уравнение не имеет решения х и у - цифры, они положительны и равняться -2 не могут
Если приписать цифру 2 слева, то получится трёхзначное число 200+10х+у, которое в 9 раз больше задуманного двузначного (10х+у) 200+10х+у = 9·(10х+у) 200+10х+у-90х-9у=0 80х+8у=200 40х+4у=100 х=2 у=5 ответ. 25 Число 225 больше 25 в 9 раз
68=6·10+8
Поэтому двузначное число, записанное двумя цифрами х и у
это
10х + у.
Если приписать цифру 2 справа, то получится трёхзначное число
100х + 10у + 2, которое в 9 раз больше задуманного двузначного (10х + у)
100х + 10у + 2 = 9(10х + у)
100х + 10у + 2 = 90х + 9у,
100х-90х+10у-9у = -2
10х+у = - 2
Это уравнение не имеет решения
х и у - цифры, они положительны и равняться -2 не могут
Если приписать цифру 2 слева, то получится трёхзначное число
200+10х+у, которое в 9 раз больше задуманного двузначного (10х+у)
200+10х+у = 9·(10х+у)
200+10х+у-90х-9у=0
80х+8у=200
40х+4у=100
х=2
у=5
ответ. 25
Число 225 больше 25 в 9 раз
- 5( 1 -(sinx - cosx)² ) - 16(sinx-cosx)+8=0 ;
*sinx - cosx)² = sin²x -2sinx*cosx +cos²x =1 -sin2x⇒ sin2x =1 -(sinx - cosx)² *
5*(sinx - cosx)² - 16*(sinx - cosx)+ 3=0 ; * * *замена : t =(sinx-cosx) * * *
можно и так [ это квадратное уравнение относительно (sinx - cosx) ]
sinx - cosx = (8 ±7)/5 || D/4 =(18/2)² -5*3 =64 -15 =49 =7² ||
[ sinx - cosx = (8 +7)/5 =3 ; sinx - cosx = (8 -7)/5 =1 / 5 =0,2.
а) sinx - cosx =3 не имеет решения
б) sinx - cosx =0,2 ;
√2 *sin(x -π/4) =0,2 ;
sin(x -π/4) =0,1√2 ;
x -π/4 =(-1)^n * arcsin(0,1√2) +πn , n ∈ Z.x = π/4 + (-1)^n *arcsin(0,1√2) + πn , n ∈ Z.
ответ : π/4 +(-1)^n *arcsin(0,1√2) +πn , n ∈ Z.