х (ч) затратит первая (х+5) (ч) затратит вторая машина. 1/х-производительность первой машины в 1час 1/(х+5) -производительность второй. 1/6 ч общая производительность за 1час. Составим уравнение: 1/х+1/(х+5)=1/6 приводим к общему знаменателю 6(х+5)+6х-х(х+5)=0 х²-7х-30=0 D=(-7)²-4*1*(-30)=49-(-120)=49+120=√169=13 Дискриминант больше 0, уравнение имеет 2 корня: x₁=(13+7)/2=20/2=10 (ч) первая машина; x₂=((-13+7)/2=-6/2=-3 - НЕТ, т.к. время не может быть отрицательное. 10+5=15 (ч) – время второй
Дискриминант больше 0, уравнение имеет 2 корня: x₁=(13+7)/2=20/2=10; x₂=((-13+7)/2=-6/2=-3 - этот ответ не подходит,т.к. время не может быть отрицательное.
Значит
первая снегоуборочная машина в отдельности выполнить всю работы за 10часов
(х+5) (ч) затратит вторая машина.
1/х-производительность первой машины в 1час
1/(х+5) -производительность второй.
1/6 ч общая производительность за 1час.
Составим уравнение:
1/х+1/(х+5)=1/6
приводим к общему знаменателю
6(х+5)+6х-х(х+5)=0
х²-7х-30=0
D=(-7)²-4*1*(-30)=49-(-120)=49+120=√169=13
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(13+7)/2=20/2=10 (ч) первая машина;
x₂=((-13+7)/2=-6/2=-3 - НЕТ, т.к. время не может быть отрицательное.
10+5=15 (ч) – время второй
пусть за хч-первая выполнит,а х+5 ч-выполнит вторая машина.
1/х-производительность первой машины в 1час,а 1/(х+5) -производительность второй.
а 1/6 ч общая производительность за 1час.
Составим уравнение:
1/х+1/(х+5)=1/6 - приводим к общему знаменателю-6*х*(х+5)
6х+6х+30=х²+5х
х²-7х-30=0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-7)²-4*1*(-30)=49-(-120)=49+120=√169=13;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(13+7)/2=20/2=10;
x₂=((-13+7)/2=-6/2=-3 - этот ответ не подходит,т.к. время не может быть отрицательное.
Значит
первая снегоуборочная машина в отдельности выполнить всю работы за 10часов
а вторая 10+5=за 15часов.