29.9. 1) sinx = 0,21 болса, онда sin x + cos;
2) sin x + cos x = 0,4 болса, онда tgx;
3) sin - cos x = 0,5 болса, онда соѕх;
4) sin x = -0,44 болса, онда sin - cos ,
5) sin + cos x = 0,6 болса, онда sinx;
6) cosx = 0,8 болса, онда /10 (sin x + cos ; ) өрнегінің мәнін
табыңдар.
x+4y=9 |*(-2) => -2x-8y=-18 => x=3
3x+8y=21 |*1 => 3x+8y=21 => y=1,5
Сложив уравнения, получим х=3
ответ: (3; 1,5)
2)
3x+y=264 |*5 => 15x+5y=1320 => x=80
2x-5y=40 |*1 => 2x-5y=40 => y=24
Сложив уравнения, получим 17х=1360 => x=80
ответ: (80; 24)
3) Умножим второе уравнение на 10
x+y=4100 |*(-8) => -8x-8y= -32800 => x=2800
8x+11y=36700 |*1 => 8x+11y=36700 => y=1300
Сложив уравнения, получим 3y=3900 => y=1300
ответ: (2800; 1300)
D=b²-4ac=2²-4·1·(-5)=4+20=24. √D=√24=2√6
x₁=(-b+√D)/2a=(-2+2√6)/2=2(√6-1)/2=(√6-1)/1=√6-1
x₂=(-b-√D)/2a=(-2-2√6)/2=-2(√6+1)/2=-(√6+1), где x₁=√6-1 и x₂=-(√6+1) корни уравнения. Теперь находим произведение корней уравнения:
x₁·x₂=(√6-1)·(-1)·(√6+1)=(√6²-1²)·(-1)=-(6-1)=-5
2) [(3/(x-3)-(3/x)]·x+3/9=[[3x-3(x-3)]·x]/(x-3)·x +3/9=раскрываем скобки и сокращаем=[3x-3x+9]/(x-3)·x +3/9=9/(x-3)+3/9=первую дробь умножаем на 9, вторую умножаем на (x-3) =(81+3x²-9x)/(x-3)x=(81+3x-9)/(x-3)=
=(72-3x)/(x-3)=3(24-x)/(x-3)
3) 4√0.0016-(1/2)√0.04=4·√(0.04)²-(1/2)·√(0.2)²=4·0.04-0.2÷2=0.16-0.1=0.06