29. Задана арифметична прогресія аа,, а, ...а, . Відомо, що а = 5 та d = -3 Яке з наступних тверджень правильне? А) а, -а, = 9; Б) а, — а = -6; В) а = -12; Г) а = 12. Д) інша відповідь.
По формуле общего члена геометрической прогрессии:
Найти b₅₀/b₁₀=b₁·q⁴⁹/b₁·q⁹=q⁴⁰.
По условию: S₃₀ меньше (S₉₀-S₃₀) в 72 раза. Значит 72S₃₀=S₉₀-S₃₀ или 73S₃₀=S₉₀.
По формуле суммы n- первых членов геометрической прогрессии:
73b₁(q³⁰-1)=b₁(q⁹⁰-1); 73q³⁰-q⁹⁰=72
q³⁰=t q⁹⁰=(q³⁰)³=t³ Кубическое уравнение t³-73t+72=0 Легко заметить, что t=1 является корнем уравнения 1-73+72=0- верно. Это разложить левую часть на множители. t³-1-73t+73=0 (t-1)(t²+t+1)-73(t-1)=0 (t-1)(t²+t-72)=0 t₁=1 или t²+t-72=0 D=1+288=289 t₂=(-1-17)/2=-9 или t₂=(-1+17)/2=8 q³⁰=-9 - уравнение не имеет корней. q³⁰=8; (q¹⁰)³=2³. Значит q¹⁰=2 q⁴⁰=2⁴=16 О т в е т.b₅₀/b₁₀=q⁴⁰=16.
{ x² + 3xy + 2y² - x + y - 6 = 0
Разложим каждое уравнение на множители, решив его как квадратное уравнение, относительно x.
1) x² + xy - 2y² + 8x + 10y - 12 = 0
x² + (y + 8)x - 2y² + 10y + 12 = 0
D = (y + 8)² - 4(- 2y² + 10y + 12) = y² + 16y + 64 + 8y² - 40y - 48 =
= 9y² - 24y + 16 = (3y - 4)²
x₁ = (- y - 8 + |3y - 4|) / 2
Раскроем модуль:
[ x = (- y - 8 + 3y - 4) / 2
[ x = (- y - 8 - 3y + 4) / 2
[ x = (2y - 12) / 2
[ x = (- 4y - 4) / 2
[ x = y - 6
[ x = - 2y - 2
x₂ = (- y - 8 - |3y - 4|) / 2 - здесь раскрывается таким же образом и корни совпадают с предыдущими двумя
Таким образом, первое уравнение можно записать как:
(x - y + 6)(x + 2y + 2) = 0
2) x² + 3xy + 2y² - x + y - 6 = 0
x² + (3y - 1)x + 2y² + y - 6 = 0
D = (3y - 1)² - 4(2y² + y - 6) = 9y² - 6y + 1 - 8y² - 4y + 24 =
= y² - 10y + 25 = (y - 5)²
x₁ = (-3y + 1 + |y - 5|) / 2
Раскроем модуль:
[ x = (-3y + 1 + y - 5) / 2
[ x = (-3y + 1 - y + 5) / 2
[ x = (-2y - 4) / 2
[ x = (-4y + 6) / 2
[ x = -y - 2
[ x = -2y + 3
x₂ = (-3y + 1 + |y - 5|) / 2 - здесь раскрывается таким же образом и корни совпадают с предыдущими двумя
Таким образом, второе уравнение можно записать как:
(x + y + 2)(x + 2y - 3) = 0
Итого, получим систему уравнений:
{ (x - y + 6)(x + 2y + 2) = 0
{ (x + y + 2)(x + 2y - 3) = 0
Перепишем, как систему совокупностей уравнений:
{ [ x - y + 6 = 0
{ [ x + 2y + 2 = 0
{
{ [ x + y + 2 = 0
{ [ x + 2y - 3 = 0
Ну а дальше решим по отдельности 4 системы ...
ответ: (-4; 2); (-3; 3); (-2; 0)
Найти
b₅₀/b₁₀=b₁·q⁴⁹/b₁·q⁹=q⁴⁰.
По условию:
S₃₀ меньше (S₉₀-S₃₀) в 72 раза.
Значит
72S₃₀=S₉₀-S₃₀
или
73S₃₀=S₉₀.
По формуле суммы n- первых членов геометрической прогрессии:
73b₁(q³⁰-1)=b₁(q⁹⁰-1);
73q³⁰-q⁹⁰=72
q³⁰=t
q⁹⁰=(q³⁰)³=t³
Кубическое уравнение
t³-73t+72=0
Легко заметить, что t=1 является корнем уравнения 1-73+72=0- верно.
Это разложить левую часть на множители.
t³-1-73t+73=0
(t-1)(t²+t+1)-73(t-1)=0
(t-1)(t²+t-72)=0
t₁=1 или t²+t-72=0
D=1+288=289
t₂=(-1-17)/2=-9 или t₂=(-1+17)/2=8
q³⁰=-9 - уравнение не имеет корней.
q³⁰=8;
(q¹⁰)³=2³.
Значит
q¹⁰=2
q⁴⁰=2⁴=16
О т в е т.b₅₀/b₁₀=q⁴⁰=16.