Log(16;3x-1)<2 (log16;3x-1)=2 (3x-1)^2=16 x1=-1 x2=5/3 проверяем корни под условия 3x-1>0 и 3x-1≠1 под них подходит только корень x=5/3 рассмотрим 2 случая I)0<3x-1<1 1<3x<2 1/3<x<2/3 в этот промежуток наш корень x=5/3 не входит, значит, функция y=log(16;3x-1)-2 на этом промежутке знакопостоянна. Остается определить этот знак. Для этого возьмём x=0.4, который входит в промежуток 1/3<x<2/3 и найдем для него знак функции. log(16;0.2)-2<0, т.к. log(16;0.2) тоже отрицательно, значит, промежуток (1/3;2/3) является решением исходного неравенства II)3x-1>1 3x>2 x>2/3 т.к. корень функции y=log(16;3x-1)-2 ( x=5/3) входит в этот промежуток, то функция у нас принимает и положительный, и отрицательный знак. нам надо найти, при каких значениях отрицательный знак, так как мы решаем неравенство log(16;3x-1)-2<0 для этого возьмём x=17/3 и получим log(16;17*3/3-1)-2=-1, а т.к. 17/3>5/3 и при 17/3 функция принимает отрицательный знак, то и при любом x>5/3 функция принимает отрицательный знак, значит, решение (5/3;+∞) нам тоже подходит ответ:1/3<x<2/3; x>5/3
Наши действия: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка. 4) из всех результатов ищем наибольший( наименьший) и пишем ответ. поехали? 1)f'(x) = 3x^2 -12 2)3x^2 -12 = 0 3x^2 = 12 x^2 = 4 x = +-2 3) из этих чисел в указанный промежуток [0;3] попал х = 2 f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9 f(0) = 0^3 -12*0 +7 = 7 f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2 4) ответ: max f(x) = f(0) = 7 minf(x) = f(2) = -9
(log16;3x-1)=2
(3x-1)^2=16
x1=-1
x2=5/3
проверяем корни под условия 3x-1>0 и 3x-1≠1
под них подходит только корень x=5/3
рассмотрим 2 случая
I)0<3x-1<1
1<3x<2
1/3<x<2/3
в этот промежуток наш корень x=5/3 не входит, значит, функция y=log(16;3x-1)-2 на этом промежутке знакопостоянна. Остается определить этот знак. Для этого возьмём x=0.4, который входит в промежуток 1/3<x<2/3 и найдем для него знак функции. log(16;0.2)-2<0, т.к. log(16;0.2) тоже отрицательно, значит, промежуток (1/3;2/3) является решением исходного неравенства
II)3x-1>1
3x>2
x>2/3
т.к. корень функции y=log(16;3x-1)-2 ( x=5/3) входит в этот промежуток, то функция у нас принимает и положительный, и отрицательный знак. нам надо найти, при каких значениях отрицательный знак, так как мы решаем неравенство log(16;3x-1)-2<0
для этого возьмём x=17/3 и получим log(16;17*3/3-1)-2=-1, а т.к. 17/3>5/3 и при 17/3 функция принимает отрицательный знак, то и при любом x>5/3 функция принимает отрицательный знак, значит, решение (5/3;+∞) нам тоже подходит
ответ:1/3<x<2/3; x>5/3
2) приравниваем её к нулю и решаем уравнение
3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка.
4) из всех результатов ищем наибольший( наименьший) и пишем ответ.
поехали?
1)f'(x) = 3x^2 -12
2)3x^2 -12 = 0
3x^2 = 12
x^2 = 4
x = +-2
3) из этих чисел в указанный промежуток [0;3] попал х = 2
f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9
f(0) = 0^3 -12*0 +7 = 7
f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2
4) ответ: max f(x) = f(0) = 7
minf(x) = f(2) = -9