все эти величины определены в (1). подставим значения.
х1² + х2² = [-(2 - а)]² - 2 * (- а - 3) = (2 - а)² + 2 * а + 6 = 4 - 4 * а + а² + 2 * а + 6 = а² - 2 * а + 10. (2)
в полученном выражении выделим полные квадрат.
тогда (2) примет вид: а² - 2 * а * 1 + 1² + (10 - 1) = (а - 1)² + 9. (3). проанализируем выражение (3), (а - 1)²> 0 при любых а и минимально при а = 1.
По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным
ответ:
получи подарки и
стикеры в вк
нажми, чтобы узнать больше
августа 14: 23
найти все значения а при которых сумма квадратов корней уравнения х^2+(2-а)х-а-3=0 будет наименьшей
ответ или решение1
архипова вера
рассмотрим корни уравнения: х^2 + (2 - а) * х - (а-3) = 0, и применим теорему bиета:
х1 + х2 = -(2 - а); х1 * х2 = - а - 3.(1)
найдём искомые (х1² + х2²) = (х1 + х2)² - 2 * х1 * х2.
все эти величины определены в (1). подставим значения.
х1² + х2² = [-(2 - а)]² - 2 * (- а - 3) = (2 - а)² + 2 * а + 6 = 4 - 4 * а + а² + 2 * а + 6 = а² - 2 * а + 10. (2)
в полученном выражении выделим полные квадрат.
тогда (2) примет вид: а² - 2 * а * 1 + 1² + (10 - 1) = (а - 1)² + 9. (3). проанализируем выражение (3), (а - 1)²> 0 при любых а и минимально при а = 1.
объяснение:
По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным