обоих случаях у нас квадратная функция, значит, это графики парабол. Для их построения необходимо минимум 3 точки, одна из которых - это вершина параболы.
Вершина параболы имеет какие-то координаты (х;y).
Вершину можно найти по формуле х = - b/2a
Для случая а) а =1, b = -2, c = -8. Получаем координату х = 1. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (1; -9)
Для случая б) а = -1, b = 5, c = 0. Получаем координату х = 2.5. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (2.5; 5)
Теперь берём произвольное значение x и подставляем в функцию, таким образом получаем искомые графики.
На остальные вопросы легко ответить, смотря на график.
не уверен шо правельно но
обоих случаях у нас квадратная функция, значит, это графики парабол. Для их построения необходимо минимум 3 точки, одна из которых - это вершина параболы.
Вершина параболы имеет какие-то координаты (х;y).
Вершину можно найти по формуле х = - b/2a
Для случая а) а =1, b = -2, c = -8. Получаем координату х = 1. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (1; -9)
Для случая б) а = -1, b = 5, c = 0. Получаем координату х = 2.5. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (2.5; 5)
Теперь берём произвольное значение x и подставляем в функцию, таким образом получаем искомые графики.
На остальные вопросы легко ответить, смотря на график.
конечно, решается...
это биквадратное уравнение ("дважды" квадратное...)
вводим замену (новую переменную) а = с^2
и получаем квадратное уравнение относительно переменной а
a^2 - 26a - 160 = 0
D = 26*26 + 4*160 = 4*(169+160) = 4*329
а1 = (26 - 2V329)/2 = 13 - V329
а2 = (26 + 2V329)/2 = 13 + V329
возвращаемся к замене...
с^2 = 13 - V329 ---не имеет смысла (квадрат числа не может быть отрицательным числом...)
с^2 = 13 + V329
c1 = V(13 + V329)
c2 = -V(13 + V329)
это решение (хоть и числа "некрасивые" ---если нет ошибки в условии...)