Скорость теплохода в стоячей воде равна 32,5 км/ч.
Объяснение:
Дано:
S₁ = 4 км против течения
S₂ = 33 км по течению
v = 6,5 км/ч -- скорость течения
T = 1 ч -- общее время
Найти: V -- скорость теплохода в стоячей воде
(V – v) -- скорость теплохода при движении против течения, поэтому на путь против течения теплоход затратил S₁ / (V – v) времени.
(V + v) -- скорость теплохода при движении по течению, поэтому на путь по течению теплоход затратил S₂ / (V + v) времени.
Общее время T равно сумме времени, которое теплоход шел по течению и против течения:
T = S₁ / (V – v) + S₂ / (V + v)
T(V – v)(V + v) = S₁(V + v) + S₂(V – v)
TV² – Tv² = (S₁ + S₂)V + (S₁ – S₂)v
TV² – (S₁ + S₂)V – Tv² – (S₁ – S₂)v = 0
Подставим числовые значения:
V² – (4 + 33)V – 6,5² – (4 – 33)·6,5 = 0
V² – 37V + 146,25 = 0
D = 37² – 4·146,25 = 784 = 28²
V₁ = (37 – 28)/2 = 9/2 = 4,5 км/ч -- не подходит, т.к. при такой скорости теплоход не смог бы двигаться против течения реки
V₂ = (37 + 28)/2 = 32,5 км/ч
В этом задании вам необходимо определить значение выражений при заданных значениях. Получается следующее решение.
(5p + q) : (р – 4q), если:
а) При p = –2,18; q = 10,9;
(5 * (-2,18)) + 10,9) : (-2,18 - 4 * 10,9) = (-10,9 + 10,9) : (-2,18 - 43,6) = 0 : 45,78 = 0.
В результате получается ответ равный 0.
б) При p = 2; q = 3;
(5 * 2 + 3) : (2 - 4 * 3) = (10 + 3) : (2 - 12) = 13 : (-10) = -1,3.
В результате получается ответ равный -1,3.
в) При р = 0,5; q = 1.
(5 * 0,5 + 1) : (0,5 - 4 * 1) = (2,5 + 1) : (0,5 - 4) = 3,5 : (-3,5) = -1.
Значение данного выражения равно -1.
Скорость теплохода в стоячей воде равна 32,5 км/ч.
Объяснение:
Дано:
S₁ = 4 км против течения
S₂ = 33 км по течению
v = 6,5 км/ч -- скорость течения
T = 1 ч -- общее время
Найти: V -- скорость теплохода в стоячей воде
(V – v) -- скорость теплохода при движении против течения, поэтому на путь против течения теплоход затратил S₁ / (V – v) времени.
(V + v) -- скорость теплохода при движении по течению, поэтому на путь по течению теплоход затратил S₂ / (V + v) времени.
Общее время T равно сумме времени, которое теплоход шел по течению и против течения:
T = S₁ / (V – v) + S₂ / (V + v)
T(V – v)(V + v) = S₁(V + v) + S₂(V – v)
TV² – Tv² = (S₁ + S₂)V + (S₁ – S₂)v
TV² – (S₁ + S₂)V – Tv² – (S₁ – S₂)v = 0
Подставим числовые значения:
V² – (4 + 33)V – 6,5² – (4 – 33)·6,5 = 0
V² – 37V + 146,25 = 0
D = 37² – 4·146,25 = 784 = 28²
V₁ = (37 – 28)/2 = 9/2 = 4,5 км/ч -- не подходит, т.к. при такой скорости теплоход не смог бы двигаться против течения реки
V₂ = (37 + 28)/2 = 32,5 км/ч
В этом задании вам необходимо определить значение выражений при заданных значениях. Получается следующее решение.
(5p + q) : (р – 4q), если:
а) При p = –2,18; q = 10,9;
(5 * (-2,18)) + 10,9) : (-2,18 - 4 * 10,9) = (-10,9 + 10,9) : (-2,18 - 43,6) = 0 : 45,78 = 0.
В результате получается ответ равный 0.
б) При p = 2; q = 3;
(5 * 2 + 3) : (2 - 4 * 3) = (10 + 3) : (2 - 12) = 13 : (-10) = -1,3.
В результате получается ответ равный -1,3.
в) При р = 0,5; q = 1.
(5 * 0,5 + 1) : (0,5 - 4 * 1) = (2,5 + 1) : (0,5 - 4) = 3,5 : (-3,5) = -1.
Значение данного выражения равно -1.