Объяснение:
1)
2cos²x + cos x = 0
cos x · (2cos x + 1) = 0
cos x = 0 (1) или 2cos x + 1 = 0 (2)
(1)
x = π/2 + πk, k∈Z
(2)
2cos x = -1
cos x = -1/2
x = ±(π - π/3) + 2πn, n∈Z
x = ±2π/3 + 2πn
2)
sin 3x = sin 5x
sin 5x - sin 3x = 0
2 sin ((5x - 3x)/2) · cos ((5x + 3x)/2) = 0
sin x = 0 (1) или cos 4x = 0 (2)
x = πk, k∈Z
4x = π/2 + πn, n∈Z
x = π/8 + πn/4
Объяснение:
1)
2cos²x + cos x = 0
cos x · (2cos x + 1) = 0
cos x = 0 (1) или 2cos x + 1 = 0 (2)
(1)
x = π/2 + πk, k∈Z
(2)
2cos x = -1
cos x = -1/2
x = ±(π - π/3) + 2πn, n∈Z
x = ±2π/3 + 2πn
2)
sin 3x = sin 5x
sin 5x - sin 3x = 0
2 sin ((5x - 3x)/2) · cos ((5x + 3x)/2) = 0
sin x = 0 (1) или cos 4x = 0 (2)
(1)
x = πk, k∈Z
(2)
4x = π/2 + πn, n∈Z
x = π/8 + πn/4