6;5;8;... а1=6, d=a2-a1=5-6=-1. a2=5. a3=8. a4=6+(4-1)*(-1)=6+3*(-1)=6-3=3. a5=6+(5-1)*(-1)=6+4*(-1)=6-4=2. a6=6+(6-1)*(-1)=6+5*(-1)=6-5=1. a7=6+(7-1)*(-1)=6+6*(-1)=6-6=0. a8=6+(8-1)*(-1)=6+7*(-1)=6-7=-1. a9=6+(9-1)*(-1)=6+8*(-1)=6-8=-2. a10=6+(10-1)*(-1)=6+9*(-1)=6-9=-3. a11=6+(11-1)*(-1)=6+10*(-1)=6-10=-4. a12=6+(12-1)*(-1)=6+11*(-1)=6-11=-5. a13=6+(13-1)*(-1)=6+12*(-1)=6-12=-6. a14=6+(14-1)*(-1)=6+13*(-1)=6-13=-7. a15=6+(15-1)*(-1)=6+14*(-1)=6-14=-8. a16=6+(16-1)*(-1)=6+15*(-1)=6-15=-9. a17=6+(17-1)*(-1)=6+16*(-1)=6-16=-10. a18=6+(18-1)*(-1)=6+17*(-1)=6-17=-11. a19=6+(19-1)*(-1)=6-18*(-1)=6-18=-12. a20=6+(20-1)*(-1)=6+19*(-1)=6-19=-13. Никакие числа не встретились,значит никакого места у них нет.
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),