Примем
а - 1-й катет прямоугольного треугольника, см
в - 2-й катет прямоугольного треугольника, см
с - гипотенуза треугольника, см
тогда
Р = а + в + с = 30
в = а+7
а + а+7 + с = 30
2*а + с = 30-7=23
c=23-2*a
а^2+в^2=c^2
a^2+(a+7)^2-(23-2*a)^2=0
a^2+a^2+14*a+49-529+92*a-4*a^2=0
-2*a^2+106*a-480=0
решаем при дискриминанта и получаем:
a1=48 см
a2=5 см
Из этих двух корней принимаем а2=5, т.к. а1=48 не подходит по причине того, что один из катетов не может быть больше периметра
в = 5 + 7 = 12 см
с = Р - а - в =30 - 5 - 12 = 13 см
Проверим
5^2+12^2=13^2
25 + 144 = 169
169=169
ответ: катеты искомого прямоугольного треугольника равны 5 и 12 см, а гипотенуза равна 13 см.
1) Log3 4 - log3 16 + log3 4/9= Log3 4/ 16 + log3 4/9=Log3 ((4/16)*( 4/9))= Log3 1/9=
Log3 (3)^-2= -2
2) 2 log7 27 – log7 81-2 log7 21=log7 27^2 / 81-2 log7 21= log7 729/ 81- log7 21 ^2= log7 9- log7 21 ^2 = log7 (9/ 441)= log7 (1/ 49) = log7 (7^-2)=-2
3) 2 log2 8 +log2 15/4 – log2 15=log2 (8^2*(15/4)) – log2 15= log2 ((64*15)/4) – log2 15 =
log2 (16*15) – log2 15 = log2 ((16*15)/15)= log2 (16)= log2 (2^4)=4
4) log3 7 * log4 81 * log7 2= log4 81 * log7 2*1/ log7 3= log4 3^4 *( log7 2/ log7 3 )=
4* log4 3 * log3 2=4* log3 2*(1/ log3 4) = 4* log3 2*(1/ log3 2^2) = 4* log3 2*(1/ 2 log3 2)= (4* log3 2)/ (2 log3 2) =4/2=2
5) Lg3(log3 25+log3 2-log3 5) = Lg3(log3 (25* 2)-log3 5)= Lg3(log3 50/ 5) = Lg3*log3 10 = log10 3* log3 10= log10 3/ log10 3=1
Примем
а - 1-й катет прямоугольного треугольника, см
в - 2-й катет прямоугольного треугольника, см
с - гипотенуза треугольника, см
тогда
Р = а + в + с = 30
в = а+7
а + а+7 + с = 30
2*а + с = 30-7=23
c=23-2*a
а^2+в^2=c^2
a^2+(a+7)^2-(23-2*a)^2=0
a^2+a^2+14*a+49-529+92*a-4*a^2=0
-2*a^2+106*a-480=0
решаем при дискриминанта и получаем:
a1=48 см
a2=5 см
Из этих двух корней принимаем а2=5, т.к. а1=48 не подходит по причине того, что один из катетов не может быть больше периметра
тогда
в = 5 + 7 = 12 см
с = Р - а - в =30 - 5 - 12 = 13 см
Проверим
5^2+12^2=13^2
25 + 144 = 169
169=169
ответ: катеты искомого прямоугольного треугольника равны 5 и 12 см, а гипотенуза равна 13 см.
1) Log3 4 - log3 16 + log3 4/9= Log3 4/ 16 + log3 4/9=Log3 ((4/16)*( 4/9))= Log3 1/9=
Log3 (3)^-2= -2
2) 2 log7 27 – log7 81-2 log7 21=log7 27^2 / 81-2 log7 21= log7 729/ 81- log7 21 ^2= log7 9- log7 21 ^2 = log7 (9/ 441)= log7 (1/ 49) = log7 (7^-2)=-2
3) 2 log2 8 +log2 15/4 – log2 15=log2 (8^2*(15/4)) – log2 15= log2 ((64*15)/4) – log2 15 =
log2 (16*15) – log2 15 = log2 ((16*15)/15)= log2 (16)= log2 (2^4)=4
4) log3 7 * log4 81 * log7 2= log4 81 * log7 2*1/ log7 3= log4 3^4 *( log7 2/ log7 3 )=
4* log4 3 * log3 2=4* log3 2*(1/ log3 4) = 4* log3 2*(1/ log3 2^2) = 4* log3 2*(1/ 2 log3 2)= (4* log3 2)/ (2 log3 2) =4/2=2
5) Lg3(log3 25+log3 2-log3 5) = Lg3(log3 (25* 2)-log3 5)= Lg3(log3 50/ 5) = Lg3*log3 10 = log10 3* log3 10= log10 3/ log10 3=1