Любой многочлен степени n вида  представляется произведением постоянного множителя при старшей степени  и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни  и  многочлена  являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где 
Объяснение:
Любой многочлен степени n вида  представляется произведением постоянного множителя при старшей степени  и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни  и  многочлена  являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где 
Объяснение:
1б)
4ˣ⁺¹+7*2ˣ-2=0
4ˣ *4¹+7*2ˣ-2=0, 2ˣ>0
4*2²ˣ+7*2ˣ-2=0, пусть 2ˣ=а, тогда 4а²+7а-2=0
Д=в²-4ас, Д=7²-4*4*(-2)=81
х₁=(-в+√Д):2а , х₁=(-7+9):8=0,25 ,
х₂=(-в-√Д):2а , х₂=(-7-9):8=-2, не подходит, т.к. 2ˣ>0.
2ˣ=0,25 или 2ˣ=0,5² или х=2
ответ. х=2.
2а) 0,5²ˣ⁻⁴ <0,25
0,5²ˣ⁻⁴ <0,5², т.к. 0< 0,5<1, то знак неравенства меняется,
2х-4>2
2х >6
х >3.
ответ. х >3.