2каменщикасложили вместе стену за 20дней.за сколько дней мог бы выполнить эту работу каждый из них отдельно если известно что1каменщик может выполнить эту работу на 9дней быстрее2
Допустим, что скорость первого велосипедиста = х км/ч,
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами А значит 36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения: a = 1,
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами
А значит
36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения:
a = 1,
b = − 3,
c = − 108.
Найдем дискриминант по формуле D = b² − 4ac:
D = b² − 4ac = (− 3)² − 4 * 1 * (− 108) = 9 + 432 = 441
Корни уравнения находятся по формулам
x1 =(− b + √D)/2a,
x2 =(− b − √D)/2a:
x1 =(-(-3) + √441)/ (2*1)=(3 + 21)/2=24/2=12
x2 =(-(-3) -√441)/ (2*1)=(3 - 21)/2=-18/2=−9, но скорость не можеть быть со знаком минус.
Поэтому
скорость первого велосипедиста = х км/ч = 12 км/ч,
скорость другого велосипедиста = х-3 км/ч = 12-3=9 км/ч
ответ: скорость первого велосипедиста = 12 км/ч, скорость другого велосипедиста =9 км/ч
Пусть t = sinx, t ∈ [-1; 1].
2t² + 3t - 5 = 0
D = 9 + 4•5•2 = 49 = 7²
t1 = (-3 + 7)/4 = 4/4 = 1
t2 = (-3 - 7)/4 = -10/4 - не уд. условию
Обратная замена:
sinx = 1
x = π/2 + 2πn, n ∈ Z.
2) 10sin²x - 17cosx - 16 = 0
10 - 10cos²x - 17cosx - 16 = 0
-10cos²x - 17cosx - 6 = 0
10cos²x + 17cosx + 6 = 0
Пусть t = cosx, x ∈ [-1; 1].
D = 289 - 4•6•10 = 49 = 7²
t1 = (-17 + 7)/20 = -10/20 = -1/2
t2 = (-17 - 7)/20 = -24/20 - не уд. условию
Обратная замена:
cosx = -1/2
x = ±arccos(-1/2) + 2πn, n ∈ Z
x = ±2π/3 + 2πn, n ∈ Z.
3) 5sin²x + 17sinxcosx + 6cos²x = 0
Разделим на cos²x.
5tg²x + 17tgx + 6 = 0
Пусть t = tgx.
D = 289 - 6•4•5 = 289 - 120 = 13²
t1 = (-17 + 13)/10 = -4/10 = -2/5
t2 = (-17 - 13)/10 = -30/10 = -3
Обратная замена:
tgx = -2/5
x = arctg(-2/5) + πn, n ∈ Z.
x = arctg(-3) + πn, n ∈ Z.
4) 3tgx - 14ctg + 1 = 0
3tgx - 14/tgx + 1 = 0
3tg²x + tgx - 14 = 0
Пусть t = tgx.
3t² + t - 14 = 0
D = 1 + 14•4•3 = 13²
t1 = (-1 + 13)/6 = 12/6 = 2
t2 = (-1 - 13)/6 = -14/6 = -7/3
обратная замена:
tgx = 2
x = arctg2 + πn, n ∈ Z
tgx = -7/3
x = arctg(-7/3) + πn, n ∈ Z.