В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
supersuperolga1
supersuperolga1
24.01.2020 08:24 •  Алгебра

2sin(п+x)*cos(п/2+x)=sinx найдите все корни этого уравнения принадлежащих к отрезку [-5п; -4п]

Показать ответ
Ответ:
Лол11лол
Лол11лол
22.06.2020 23:21
2*(-sinx)*(-sinx)=sinx
2sin^2x=sinx
2sin^2x-sinx=0
sinx(2sinx-1)=0
sinx=0 или sinx= \frac{1}{2}
x= \pi n или x= \frac{ \pi }{6} +2 \pi k или x= \frac{5 \pi }{6} +2 \pi l, где n,k,l-целые числа.

Корни, которые принадлежат указанному отрезку:
из первой серии корней: -5 \pi ; -4 \pi
из второй серии корней нет корней, принадлежащих, указанному промежутку, так как при k=-2 значение x будет больше, чем -4 \pi, а при k=-3 значение x будет меньше, чем -5 \pi;
из третий серии корней также нет корней, принадлежащих, указанному промежутку, так как при l=-2 значение x будет больше, чем -4 \pi, а при l=-3 значение x будет меньше, чем -5 \pi.

Следовательно, из всех корней уравнения только два корня принадлежат указанному отрезку - это концы отрезка -5 \pi ; -4 \pi.

ответ: -5 \pi ; -4 \pi.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота