В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mamylizkka81
mamylizkka81
13.05.2020 00:14 •  Алгебра

(2sin4x-cos2x)(1+cos2x)=sin^2(2x) подробно,

Показать ответ
Ответ:
dima1tod
dima1tod
03.10.2020 18:48
Я не успею написать само решение, но идею - легко.
Необходимо выполнить ряд преобразований. Сначала - раскрываем скобки. Зачем они? :D Получаем:
2sin4x + 2sin4x*cos2x - cos2x - cos^2(2x) = sin^2(2x).
Переносим последнее слагаемое левой части в правую часть.
2sin4x + 2sin4x*cos2x - cos2x = cos^2(2x) + sin^2(2x).
Очевидно, что cos^2(2x) + sin^2(2x) = 1 при любых значениях x. Тогда, перенося -cos2x в правую часть и вынося в левой части общий множитель за скобки, получим:
2sin4x * (1 + cos2x) = 1 + cos2x.
Далее мы переносим всю правую часть уравнения влево и снова выносим общий множитель за скобки.
(1 + cos2x) * (2sin4x - 1) = 0.
Далее уравнение примет вид совокупности. Первым ее условием станет уравнение [1 + cos2x = 0], вторым же - [2sin4x - 1 = 0]. Эти уравнения сводятся к простейшим тригонометрическим уравнениям, поэтому решать до конца я не буду. Но корни получаются, на первый взгляд, хорошими. Удачи. :)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота