Задачу можно понимать 2 разными по итогу решим оба варианта)
1-ый вариант, когда каждый раз прибавляется дробная часть исходного числа.
2-ой вариант, когда прибавляется дробная часть последнего полученного числа.
Решаем по 1-ому варианту.
Представим число как сумму целой и дробной части
, так вот, дробной части у нас аж 3, так как Петя два раза её прибавляет
Тогда получается такое равенство:
Нулевой икс в целой части нет смысла рассматривать, так как дробная часть ограничена
Учитываем, что целая часть числа целая, значит, и - число тоже целое. Это возможно только в том случае, если или просто целое число (1 не может быть, только 0) или дробь со знаменателем 3, то есть рассматриваем
пойдет в любом случае, а вот остальные два дробных ответа идут только в том случае, если калькулятор поддерживает арифметику с округлениями (такие, естественно, существуют, у меня дома есть такой, инженерный, он чуть поумнее стандартного калькулятора, причем необязательно программируемый).
Соответственно, начать он с этих чисел мог с инженерного калькулятора в том числе и после некоторых дробных вычислений, так что условие задачи выполнено.
Можно, конечно, и проверить эти числа ради интереса
ответ:
Решаем по 2-му варианту.
Первое число
Второе число
А далее все зависит от дробной части второго числа.
Если , то есть вся дробная часть прибавится и получится третье число
Два числа получили.
Теперь рассматриваем случай
То есть потенциальная дробная часть получается больше единицы, значит, необходимо эту единицу оттуда убрать и добавить к целой части, получается вот что:
, где в скобках дробная часть второго числа
Теперь третье число:
Получили ещё 2 значения, их можно не проверять, но я все же напишу цепочки для достоверности:
Объяснение: Для начала построим график функции y = x² + x - 2
ординаты вершины: ,
Координаты точек пересечения с осями координат:
1) с ОХ: у = 0. x² + x - 2 = 0. По теореме Виета х₁ = 1, х₂ = -2. (1; 0), (-2; 0)
2) с ОУ: х = 0. у(0) = 0 + 0 - 2 = -2. (0; -2).
График - во вложении 1.
Из графика y = x² + x - 2 можно получить график функции y = |x² + x - 2|, если ту часть графика, которая ниже оси ОХ, "отзеркалить" относительно оси ОХ. В итоге получим график во вложении 2.
Прямая, параллельная оси абсцисс, имеет вид y = a, где а - произвольное число. Будем подбирать разные значения параметра а и посмотрим, какое максимальное кол-во общих точек будут иметь наша функция и прямая y = a. (вложение 3)
Если а < 0 (наглядный пример - а = -0,4), то общих точек не будет вообще.
Если а = 0 (прямая совпадает с осью ОХ), то имеем ровно две точки пересечения.
Если а = 9/4 (отзеркаленная вершина), то иметь будем 3 точки пересечения. А если брать промежуточные значения - 0 < a < 9/4 (наглядный пример - а = 1,5), - то будет 4 точки пересечения, т.е. 4 общих точки.
Если брать значения а > 9/4 (наглядный пример - а = 3), то у нас будет только 2 общих точки.
Итого: наибольшее число общих точек графиков наших функций - 4.
Задачу можно понимать 2 разными по итогу решим оба варианта)
1-ый вариант, когда каждый раз прибавляется дробная часть исходного числа.
2-ой вариант, когда прибавляется дробная часть последнего полученного числа.
Решаем по 1-ому варианту.
Представим число как сумму целой и дробной части
, так вот, дробной части у нас аж 3, так как Петя два раза её прибавляет
Тогда получается такое равенство:
Нулевой икс в целой части нет смысла рассматривать, так как дробная часть ограничена
Учитываем, что целая часть числа целая, значит, и - число тоже целое. Это возможно только в том случае, если или просто целое число (1 не может быть, только 0) или дробь со знаменателем 3, то есть рассматриваем
пойдет в любом случае, а вот остальные два дробных ответа идут только в том случае, если калькулятор поддерживает арифметику с округлениями (такие, естественно, существуют, у меня дома есть такой, инженерный, он чуть поумнее стандартного калькулятора, причем необязательно программируемый).
Соответственно, начать он с этих чисел мог с инженерного калькулятора в том числе и после некоторых дробных вычислений, так что условие задачи выполнено.
Можно, конечно, и проверить эти числа ради интереса
ответ:
Решаем по 2-му варианту.
Первое число
Второе число
А далее все зависит от дробной части второго числа.
Если , то есть вся дробная часть прибавится и получится третье число
Два числа получили.
Теперь рассматриваем случай
То есть потенциальная дробная часть получается больше единицы, значит, необходимо эту единицу оттуда убрать и добавить к целой части, получается вот что:
, где в скобках дробная часть второго числа
Теперь третье число:
Получили ещё 2 значения, их можно не проверять, но я все же напишу цепочки для достоверности:
ответ:
ответ: 4.
Объяснение: Для начала построим график функции y = x² + x - 2
ординаты вершины: ,
Координаты точек пересечения с осями координат:
1) с ОХ: у = 0. x² + x - 2 = 0. По теореме Виета х₁ = 1, х₂ = -2. (1; 0), (-2; 0)
2) с ОУ: х = 0. у(0) = 0 + 0 - 2 = -2. (0; -2).
График - во вложении 1.
Из графика y = x² + x - 2 можно получить график функции y = |x² + x - 2|, если ту часть графика, которая ниже оси ОХ, "отзеркалить" относительно оси ОХ. В итоге получим график во вложении 2.
Прямая, параллельная оси абсцисс, имеет вид y = a, где а - произвольное число. Будем подбирать разные значения параметра а и посмотрим, какое максимальное кол-во общих точек будут иметь наша функция и прямая y = a. (вложение 3)
Если а < 0 (наглядный пример - а = -0,4), то общих точек не будет вообще.
Если а = 0 (прямая совпадает с осью ОХ), то имеем ровно две точки пересечения.
Если а = 9/4 (отзеркаленная вершина), то иметь будем 3 точки пересечения. А если брать промежуточные значения - 0 < a < 9/4 (наглядный пример - а = 1,5), - то будет 4 точки пересечения, т.е. 4 общих точки.
Если брать значения а > 9/4 (наглядный пример - а = 3), то у нас будет только 2 общих точки.
Итого: наибольшее число общих точек графиков наших функций - 4.