Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77. Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115 115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115 114-2=112 дробей несократимы
6160 2 (6160 : 2 = 3080)
3080 2 (3080 : 2 = 1540)
1540 2 (1540 : 2 = 770)
770 2 (770 : 2 = 385)
385 5 (385 : 5 = 77)
77 7 (77 : 7 = 11)
11 11 (11 : 11 = 1)
1
6160 = 2 · 2 · 2 · 2 · 5 · 7 · 11
Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77.
Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115
115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115
114-2=112 дробей несократимы
1y-0.5-0.5+0.2y+1=0
1.2y=0
y=0
ответ: 0
2) (x² +3x+2)(x² +3x+4)=8
(x² +3x+2)(x² +3x+2+2)=8
y=x² +3x+2
y(y+2)=8
y² +2y-8=0
D=4+32=36
y₁=(-2-6)/2= -4
y₂=(-2+6)/2=2
При у= -4
x² +3x+2= -4
x² +3x+2+4=0
x² +3x+6=0
D=9-24<0
нет решений.
При у=2
x² +3x+2=2
x² +3x+2-2=0
x² +3x=0
x(x+3)=0
x=0 x+3=0
x= -3
ответ: -3; 0.
3) (x² -2x-3)(4-x² +2x)= -2
(x² -2x-3)*(-(x² -2x-4))= -2
(x² -2x-3)(x² -2x-3-1)=2
y=x² -2x-3
y(y-1)=2
y² -y-2=0
D=1+8=9
y₁=(1-3)/2= -1
y₂=(1+3)/2=2
При у= -1
x² -2x-3= -1
x² -2x-3+1=0
x² -2x-2=0
D=4+8=12
x₁=(2-√12)/2=(2-2√3)/2=1-√3
x₂=1+√3
ответ: 1-√3; 1+√3
4) (x² -x-11)(x² -x-21)= -9
(x² -x-11)(x² -x-11-10)= -9
y=x² -x-11
y(y-10)= -9
y² -10y+9=0
D=100-36=64
y₁=(10-8)/2=1
y₂=(10+8)/2=9
При у=1
x² -x-11=1
x² -x-11-1=0
x² -x-12=0
D=1+48=49
x₁=(1-7)/2= -3
x₂=(1+7)/2=4
При у=9
x² -x-11=9
x² -x-11-9=0
x² -x-20=0
D=1+80=81
x₁=(1-9)/2= -4
x₂=(1+9)/2=5
ответ: -4; -3; 4; 5.