В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Kybe009
Kybe009
25.10.2021 07:34 •  Алгебра

(2x+1)²-(2x-y)(2x+y)=(y+8)(y-10) 4x(x-5)-(2x-3)(2x-9)=6y-104

Показать ответ
Ответ:
аааааааа36
аааааааа36
03.03.2022 17:43

ответ: -8

Объяснение:

По формуле bn = b₁ * qⁿ⁻¹ преобразуем b₂, b₃, b₅:

b₂ = b₁ * q,

b₃ = b₁ * q²,

b₅ = b₁ * q⁴.

Заменим b₂, b₃, b₅ в данных выражениях и составим систему:

b₁ + b₂ + b₃ = b₁ + b₁*q + b₁*q² = b₁ * (1 + q + q²)

b₁ + b₃ + b₅ = b₁ + b₁*q² + b₁*q⁴ = b₁ * (1 + q² + q⁴)

\left \{ {{b_1(1+q+q^2)=3,} \atop {b_1(1+q^2+q^4)=5,25}} \right.

b₁ не равно нулю (от противного, если b₁ = 0, то система не имеет решений); аналогично множители с q не равны 0, поэтому можно выполнить деление уравнений.

Поделим второе уравнение на первое:

\left \{ {\frac{b_1(1+q^2+q^4)}{b_1(1+q+q^2)}=\frac{5,25}{3}, } \atop b_1(1+q+q^2)=3}} \right.

В первом уравнении сократим на b₁, не равное нулю, и решим его отдельно относительно q:

\frac{1+q^2+q^4}{1+q+q^2}=\frac{7}{4}

Так как знаменатель не обращается в нуль (D < 0), то можно выполнить перемножение крест-накрест. Получим:

4q⁴ + 4q² + 4 = 7q² + 7q + 7,

4q⁴ - 3q² - 7q - 3 = 0,

4q⁴ + (- 6q³ + 6q³) - 3q² + (-6q² + 6q²) - 7q + (-2q + 2q) - 3 = 0,

(4q⁴ - 6q³) + (6q³ - 9q²) + (6q² - 9q) + (2q - 3) = 0,

2q³(2q - 3) + 3q²(2q - 3) + 3q(2q - 3) + (2q - 3) = 0,

(2q - 3)(2q³ + 3q² + 3q + 1) = 0,

(2q - 3)(2q³ + (2q² + q²) + (2q + q) + 1) = 0,

(2q - 3)((2q³ + 2q² + 2q) + (q² + q + 1)) = 0,

(2q - 3)(2q(q² + q + 1) + q² + q + 1) = 0,

(2q - 3)(2q + 1)(q² + q + 1) = 0,

Последняя скобка не обращается в ноль (D < 0), следовательно

q₁ = -0,5

q₂ = 1,5

q₂ не подходит по условию (так как геометрическая прогрессия бесконечно убывающая, то есть |q| < 1)

Вернёмся к системе:

\left \{ {{q=-0,5} \atop {b_1(1+q+q^2)=3}} \right. \\ \\ \left \{ {{q=-0,5} \atop {b_1(1-0,5+0,25)=3}} \right. \\ \\ \left \{ {{q=-0,5} \atop {-0,25b_1=3}} \right. \\ \\ \left \{ {{q=-0,5} \atop {b_1=-12}} \right.

Используя найденные значения b₁ и q, найдём сумму прогрессии по соответствующей формуле:

S=\frac{b_1}{1-q}=\frac{-12}{1-(-0,5)}=-\frac{12}{1,5}=-8

0,0(0 оценок)
Ответ:
Егор02121
Егор02121
26.04.2022 19:02
       1                    1*( 2√3 + (√5+3√2))
= =
2√3- (√5+3√2)      (2√3- (√5+3√2))*(2√3 +(√5+3√2))

  ( 2√3 + (√5+3√2))      ( 2√3 + (√5+3√2))         ( 2√3 + (√5+3√2))
= = =  =
   (2√3)²- (√5+3√2)²      4*2 -(5+2√10+9*2)         8- 23+2√10

    ( 2√3 + (√5+3√2))         ( 2√3 + (√5+3√2)) * (2√10 + 15)
= =  =
   2√10 -  15                     (2√10 -  15)(2√10 +  15)

  ( 2√3 + √5+ 3√2) * (2√10 + 15)           ( 2√3 + √5+ 3√2) * (2√10 + 15)  
= =  
  4*10- 15²                                                     -185
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота