1) 7 в 3 степени * 7 в -2 степени = 7 в 3-2 степени = 7 в 1 степени = 7 2) (2:2) в -2 степени = 1 в -2 степени = 1 или 2:2 в -2 степени = 2 в 3 степени = 8 3) (3 в -1 степени) во 2 степени = 3 в -2 степени = 1/3 во 2 степени = 1/9 4) (5 во 2 степени) в -1 степени = 5 в -2 степени = 1/5 во второй степени = 1/25 (0,04) 5) 8 в степени -2 × 4 в третьей степени = (2 в 3 степени) в -2 степени * (2 во 2 степени) в 3 степени = 2 в -6 степени * 2 в 6 степени = 1 6) 10 в степени 0 ÷ 10 в степени -3 = 1 : 10 в -3 степени = 10 в 3 степени 7) 10 в восьмой степени × 10 в степени -5 × 10 в степени -4 = 10 в -1 степени = 1/10 8) 3 в степени -6 × (3 в степени -2) в степени -4 = 3 в -6 степени * 3 в 8 степени = 3 во 2 степени = 9
2) (2:2) в -2 степени = 1 в -2 степени = 1
или
2:2 в -2 степени = 2 в 3 степени = 8
3) (3 в -1 степени) во 2 степени = 3 в -2 степени = 1/3 во 2 степени = 1/9
4) (5 во 2 степени) в -1 степени = 5 в -2 степени = 1/5 во второй степени = 1/25 (0,04)
5) 8 в степени -2 × 4 в третьей степени = (2 в 3 степени) в -2 степени * (2 во 2 степени) в 3 степени = 2 в -6 степени * 2 в 6 степени = 1
6) 10 в степени 0 ÷ 10 в степени -3 = 1 : 10 в -3 степени = 10 в 3 степени
7) 10 в восьмой степени × 10 в степени -5 × 10 в степени -4 = 10 в -1 степени = 1/10
8) 3 в степени -6 × (3 в степени -2) в степени -4 = 3 в -6 степени * 3 в 8 степени = 3 во 2 степени = 9
1) у=(1/3)х+2 1/3
2) у=0,5х-0,5
Объяснение:
1.
у=3х-7
-3х=-у-7
Выразим х через у:
Поменяем местами х и у:
Это уравнение обратной функции.
2.
у=2х+1
Выразим х через у:
-2х=-у+1
Поменяем местами х и у:
у=0,5х-0,5
Это уравнение обратной функуии.
3.
Известно, что графики прямой и
обратной функций симметричны
относительно биссектрисы 1 коор
динатной четверти.
В одной систеие координат пост
роим графики прямой и обратной
функций. Оба графика - прямые
линии, поэтому достаточно запол
нить таблицу для двух точек.
Таблица для прямой функции:
х 0 2
у -7 -1
Таблица для обратной функции"
х -6 3
у 1/3 1
Оба графика строим в одной ко
ординатной плоскости.