Цена тетради t руб. Цена карандаша k руб. Стоимость 3-х тетрадей и 2-х карандашей: 3t + 2k = 6 р. 60 коп. = 6 ⁶⁰/₁₀₀ руб. = 6,6 руб. Стоимость 2-х тетрадей и 2-х карандашей : 2t + 2k = 4 р. 60 коп. = 4,6 руб.
А) (n+13)²-n²= =n²+2*13*n+13²-n²= =2n*13+13*13= =13(2n+13) делится на 13, потому что хотя бы один множитель делится на 13. б) (2n-5)²-(2n+1)²= =4n²-2*2n*5+5²-(4n²+2*2n*1+1²)= =4n²-20n+25-4n²-4n-1= =-24n+24= =24(1-n) делится на 24, потому что один из множителей делится на 24. в) (3n+1)²-(n-1)²= =9n²+2*3n*1+1²-(n²-2*n*1+1²)= =9n²+6n+1-n²+2n-1= =8n²+8n=8n(n+1). Рассмотрим два случая. По условию n целое, пусть n=2k-1 нечетноe, тогда n+1=2k целое четное, тогда 8n(n+1)=8(2k-1)*2k=16k(2k-1) делится на 16. Пусть n=2k четное, соответственно n+1=2k+1 нечетное, тогда 8n(n+1)=8*2k(2k+1)=16k(2k+1) делится на 16. г) 2n³-2n=2n(n²-1)=2n(n-1)(n+1) n-1, n, n+1 три целых последовательных числа, хотя бы одно из них является четным и кратно 2, а одно точно кратно 3, значит они содержат в себе простые множители 2 и 3, пусть n=2k, n-1=2k-1, n+1=2k+1=3t, а значит 2n(n-1)(n+1)=2*2k(2k-1)3t=12kt(2k-1) делится на 12.
Цена карандаша k руб.
Стоимость 3-х тетрадей и 2-х карандашей:
3t + 2k = 6 р. 60 коп. = 6 ⁶⁰/₁₀₀ руб. = 6,6 руб.
Стоимость 2-х тетрадей и 2-х карандашей :
2t + 2k = 4 р. 60 коп. = 4,6 руб.
Система уравнений:
3t + 2k = 6.6
2t + 2k = 4.6
сложения
{3t + 2k = 6.6 ⇔ {3t + 2k = 6.6
{2t + 2k = 4.6 |*(-1) ⇔ {- 2t - 2k = - 4.6
3t + 2k + (-2t - 2k) = 6.6 + (-4.6)
(3t - 2t) + (2k - 2k) = 2
t + 0 = 2
t = 2 (руб.) цена тетради
2*2 +2k = 4.6
4 + 2k = 4.6
2k = 4.6 - 4
2k = 0.6
k = 0.3 (руб.) = 30 (коп.) цена карандаша
подстановки.
{3t + 2k = 6.6 ⇔ {3t + 2k = 6.6 ⇔ {3t + 2k = 6.6
{2t + 2k = 4.6 |÷2 ⇔ {t + k = 2.3 ⇔ {t = 2.3 - k
3(2.3 - k) + 2k = 6.6
6.9 - 3k + 2k = 6.6
6.9 - k = 6.6
k = 6.9 - 6.6
k = 0.3 (руб.) = 30 (коп.) цена карандаша
t = 2.3 - 0.3
t = 2 (руб.) цена тетради
ответ : 2 руб. цена тетради ; 30 копеек цена карандаша.
=n²+2*13*n+13²-n²=
=2n*13+13*13=
=13(2n+13) делится на 13, потому что хотя бы один множитель делится на 13.
б) (2n-5)²-(2n+1)²=
=4n²-2*2n*5+5²-(4n²+2*2n*1+1²)=
=4n²-20n+25-4n²-4n-1=
=-24n+24=
=24(1-n) делится на 24, потому что один из множителей делится на 24.
в) (3n+1)²-(n-1)²=
=9n²+2*3n*1+1²-(n²-2*n*1+1²)=
=9n²+6n+1-n²+2n-1=
=8n²+8n=8n(n+1).
Рассмотрим два случая.
По условию n целое, пусть n=2k-1 нечетноe, тогда n+1=2k целое четное,
тогда 8n(n+1)=8(2k-1)*2k=16k(2k-1) делится на 16.
Пусть n=2k четное, соответственно n+1=2k+1 нечетное,
тогда 8n(n+1)=8*2k(2k+1)=16k(2k+1) делится на 16.
г) 2n³-2n=2n(n²-1)=2n(n-1)(n+1)
n-1, n, n+1 три целых последовательных числа, хотя бы одно из них является четным и кратно 2, а одно точно кратно 3, значит они содержат в себе простые множители 2 и 3, пусть n=2k, n-1=2k-1, n+1=2k+1=3t, а значит
2n(n-1)(n+1)=2*2k(2k-1)3t=12kt(2k-1) делится на 12.