Пусть АВС- прямоугольный треугольник, катеты АВ = 36 см, АС = 48 см, ВС - гипотенуза.
Пусть D - точка на гипотенузе ВС. DE - отрезок, параллельный катету АВ (точка Е на стороне АС) , DF - отрезок, параллельный катету АС (точка F на стороне АВ) .
Нужно найти точку D, чтобы S - площадь прямоугольника AFDE была наибольшей.
Обозначим ЕС через Х, DE через Y.
Треугольники АВС и EDC подобны, Y/X = DE/EC = AB/AC = 36/48 = 3/4, то есть Y = (3/4)*X.
Відповідь:
Пусть АВС- прямоугольный треугольник, катеты АВ = 36 см, АС = 48 см, ВС - гипотенуза.
Пусть D - точка на гипотенузе ВС. DE - отрезок, параллельный катету АВ (точка Е на стороне АС) , DF - отрезок, параллельный катету АС (точка F на стороне АВ) .
Нужно найти точку D, чтобы S - площадь прямоугольника AFDE была наибольшей.
Обозначим ЕС через Х, DE через Y.
Треугольники АВС и EDC подобны, Y/X = DE/EC = AB/AC = 36/48 = 3/4, то есть Y = (3/4)*X.
S = (48 - X)*Y = (48 - X)*(3/4)*X = (3/4)*(48*X - X^2) = (3/4)*(24^2 - 24^2 + 2*24*X - X^2) = (3/4)*(24^2 - (24 - X)^2).
Максимальное значение площадь прямоугольника достигает при Х = 24 см, то есть ЕС - половина катета АС.
Из подобия треугольников АВС и EDC следует, что отрезок DC - половина сгипотенузы ВС.
Точка D, при которой площадь прямоугольника AFDE наибольшая, середина гиптенузы ВС.
Пояснення:
ответ: 200.
Объяснение: Приведем отношения к общему знаменателю:
1/3 : 1/2 = 2/6 : 3/6 ,значит первое число относится ко второму как 2:3
Пусть х часть числа, тогда :
2х первое число.
3х второе число.
(2х+3х)*0,2=х третье число. (т.к. 20%=0,2 части).
100+80=180%=1,8 части будет составлять четвертое число, от разности второго и третьего числа.
(3х-х)*1,8=3,6х четвертое число.
3х+х=4х СУММА БОЛЬШЕГО И МЕНЬШЕГО ЧИСЛА,
Составим уравнение и найдем значение х:
(2х+3х+х)-3,6х=120
2,4х=120
х=50 часть числа.
4*50=200 это сумма большего и меньшего чисел.