Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
feho
13.09.2022 05:11 •
Алгебра
2x + y = 5
2x = 5 - y
Задание с учи ру
Показать ответ
Ответ:
ybrybrybrybrrby
19.11.2022 00:59
1) f'(x) = 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* ((1-2x)/(1+2x))'=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*(-2)(1+2x)-2(1-2x)/(1+2х)²=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* (-2-4х-2 +4х)/(1+2х)²=
=- 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*4/(1+2х)²
2)у = √х*Cosx
y'=1/2√x*Cosx - √x*Sinx
3) f(x) = e^Sin4x
f'(x) = e^Sin4x * Cos4x*4
f'(0)= e^0*Cos0*4 = 1*1*4 = 4
4) f(x) (3x-4)*ln(3x-4)
f'(x) =3*ln(3x-4) + (3x-4)*3/(3x-4)= 3ln(3x-4) +3
5)f(x)=5^lnx
f'(x) = 5^lnx*1/x*ln5
6) f(x) = Ctg(2x + π/2) + (x-π²)/х = -tg2x + (x-π²)/х
f'(x) = -2/Cos²2x + (x - x + π²)/х² = -2/Cos² 2x + π²/x²
f'(π/12) = -2/Сos² π/6 + π²/π/12 = -3/2 + 12π
0,0
(0 оценок)
Ответ:
milenmuradyan
16.10.2021 00:49
Вариант решения без второй производной
y=sin⁴x+cos⁴x
находим производную и приравниваем ее к нулю
y'=4sin³x cosx-4sinx cos³x
y'=4sinx cosx(sin²x-cos²x)
y'=-2sin2x(cos²x-sin²x)
y'=-2sin2x*2cos2x=-2sin4x
-2sin4x=0
sin4x=0
4x=πk
x=πk/4
Определяем знаки интервалов
- + - + - +
₀₀₀₀₀₀₀>
0 π/4 2π/4 3π/4 4π/4
При переходе от минуса к плюсу имеем минимум, от плюса к минусу - максимум функции.
ответ:
точки минимума π(k+1)/4; точки максимума πn/4; k,n∈Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
mru199
28.04.2023 21:07
Найдите значение выражения: (3a-2b)(3a^3+2b^2) при a=1/3; b=1/2...
pixxxiv
28.04.2023 21:07
Найти производную функции: f(x)=3^4x+2....
grimm330066Flippoo
26.02.2021 06:36
Составьте уравнение и решите его. Диагональ прямоугольника 65см. Найдите стороны прямоугольника, если их разность = 47см Уравнение должно быть составлено как квадратное...
Егорик69
26.02.2021 06:36
Разложить на множители х^2-25 ав^2-ас^2 -3а^2 - 6ав-3в^2...
ikotelevskaya78
06.09.2022 17:49
Из формулы S=(a*b*sinx)/2 выразить sinx...
pechenkinaolga5
27.07.2022 23:03
При каком значении переменной:значение дроби 42/x на 1/4 больше значения дроби ...
илья5310
20.12.2022 09:37
Знайдіть корені рівнянняx4+3x2−70=0x4+3x2−70=0 Відповіді:V710-10інші корені-V7...
ОляХ1
16.11.2020 23:45
Найдите угловые коэффициенты касательной к графикам следующих функций в точке Хо y=x^4-7x^3-12x+45 Xo=-1...
pro68
28.02.2021 07:56
Решите уравнения Алгебра 10ый класс подробно распишите действия...
Andriyko2033
20.04.2020 19:24
ЭТО ШЦП ПО АЛГЕБРЕ 7 КЛАСС ХОТЬ КТО НИБУДЬ Я УЖЕ НЕСКОЛЬКО ЧАСОВ НЕ МОГУ СДЕЛАТЬ ...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*(-2)(1+2x)-2(1-2x)/(1+2х)²=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* (-2-4х-2 +4х)/(1+2х)²=
=- 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*4/(1+2х)²
2)у = √х*Cosx
y'=1/2√x*Cosx - √x*Sinx
3) f(x) = e^Sin4x
f'(x) = e^Sin4x * Cos4x*4
f'(0)= e^0*Cos0*4 = 1*1*4 = 4
4) f(x) (3x-4)*ln(3x-4)
f'(x) =3*ln(3x-4) + (3x-4)*3/(3x-4)= 3ln(3x-4) +3
5)f(x)=5^lnx
f'(x) = 5^lnx*1/x*ln5
6) f(x) = Ctg(2x + π/2) + (x-π²)/х = -tg2x + (x-π²)/х
f'(x) = -2/Cos²2x + (x - x + π²)/х² = -2/Cos² 2x + π²/x²
f'(π/12) = -2/Сos² π/6 + π²/π/12 = -3/2 + 12π
y=sin⁴x+cos⁴x
находим производную и приравниваем ее к нулю
y'=4sin³x cosx-4sinx cos³x
y'=4sinx cosx(sin²x-cos²x)
y'=-2sin2x(cos²x-sin²x)
y'=-2sin2x*2cos2x=-2sin4x
-2sin4x=0
sin4x=0
4x=πk
x=πk/4
Определяем знаки интервалов
- + - + - +
₀₀₀₀₀₀₀>
0 π/4 2π/4 3π/4 4π/4
При переходе от минуса к плюсу имеем минимум, от плюса к минусу - максимум функции.
ответ:
точки минимума π(k+1)/4; точки максимума πn/4; k,n∈Z