Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
https://www.kontrolnaya-rabota.ru/s/equal-many/system-any/?ef-TOTAL_FORMS=52&ef-INITIAL_FORMS=2&ef-MIN_NUM_FORMS=0&ef-MAX_NUM_FORMS=1000&ef-0-s=11x%5E2-7x-10%3Dx%5E2%2B9x-2&ef-1-s=&ef-2-s=&ef-3-s=&ef-4-s=&ef-5-s=&ef-6-s=&ef-7-s=&ef-8-s=&ef-9-s=&ef-10-s=&ef-11-s=&ef-12-s=&ef-13-s=&ef-14-s=&ef-15-s=&ef-16-s=&ef-17-s=&ef-18-s=&ef-19-s=&ef-20-s=&ef-21-s=&ef-22-s=&ef-23-s=&ef-24-s=&ef-25-s=&ef-26-s=&ef-27-s=&ef-28-s=&ef-29-s=&ef-30-s=&ef-31-s=&ef-32-s=&ef-33-s=&ef-34-s=&ef-35-s=&ef-36-s=&ef-37-s=&ef-38-s=&ef-39-s=&ef-40-s=&ef-41-s=&ef-42-s=&ef-43-s=&ef-44-s=&ef-45-s=&ef-46-s=&ef-47-s=&ef-48-s=&ef-49-s=&ef-50-s=&ef-51-s=
Объяснение:ЭТО ССЫЛКА НА РЕШЕНИЕ
УДАЧИ