а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2})
Вероятность равна:
г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4})
Вероятность равна:
д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5})
Вероятность равна:
Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
Задание 1.
f(x)=x²-4x+2.
f(3)= 3²-4×3+2;
f(3)= 9-12+2;
f(3)= -1.
ОТВЕТ: f(3)= -1.
Задание 2.
y= x²+6x-2.
Точка А (3;23)
Подставляем в функцию значения абсциссы и ординаты точки А и проверяем равенство.
23= 3²+6×3-2;
23=9+18-2;
23=25
23 не равно 25, значит, график данной функции не проходит через точку А.
ОТВЕТ: не проходит.
Задание 3.
у= х²-8х+7.
Нужно найти координаты вершины.
Хв -?, Yв -?
Хв= -b/2a= 8/2=4
Yв= 4²-8×4+7=16-32+7= -9
Вершина параболы имеет координаты (4; -9).
ОТВЕТ: (4; -9).
Задание 4.
у = х² + 5х + 6;
Чтобы найти, в какой точке график данной функции пересекается с осью ординат ОY, нужно вместо "х" поставить 0 и решить уравнение.
у= 0+0+6;
у=6.
Координаты искомой точки — (0;6).
ОТВЕТ: (0;6).