Хорошая задача. Методами аналитической геометрии она решается в два счёта, но по-школьному надо немного подумать) 1. Уравнение y=-x+4; найдём уравнение, параллельное этой прямой, проходящее через точку пересечения диагоналей: в общем виде оно будет y=-x+C, C надо найти. 2=-5+C; C=7. Уравнение имеет вид y=-x+7. 2. Надеюсь, очевидно, что расстояние между прямыми равно 3, следовательно, половина стороны квадрата тоже равно 3, полная сторона равна 6. 3. Сделав схематичную картиночку, поймём, что вычисленная прямая находится выше данной стороны, т.е. чтобы найти вторую сторону квадрата (опять же параллельную данной), нужно поднять вычисленную прямую ещё на 3, т.е. y=-x+7+3; y=-x+10. 4. Непараллельные стороны квадрата перпендикулярны. Условие перпендикулярности прямых: угловой коэффициент двух других сторон квадрата равен (-1)/(-1)=1. Т.е. уравнения сторон имеют вид y=x+C. Найдём "центральную" сторону - ту, которая пересекается с другой "центральной" в точке пересечения диагоналей: y=x+C, 2=5+C, C=-3, y=x-3. 5. Для одной стороны прибавим, для другой вычтем 3: y=x-3-3=x-6 и y=x-3+3=x, уравнения двух других сторон: y=x-6 и y=x. 6. Координаты вершин: 1)-x+10=x; 2x=10, x=5; y=5 (5;5); 2)-x+10=x-6, 2x=16, x=8, y=2 (8;2); 3)-x+4=x-6; 2x=10, x=5, y=-1 (5;-1); 4) -x+4=x, 2x=4, x=2, y=2 (2;2). 7. Найдём уравнение одной диагонали: возьмём (5;5) и (5;-1). Очевидно, что это уравнение x=5. Но в общем случае пришлось бы подставлять в уравнение прямой x и y, решать систему двух уравнений относительно k и m. Для второй диагонали точки (8;2) и (2;2). y=2. Как-то так.
Если число кратно 99, то оно делится на 9 и 11. Признак делимости на 9: Число делится на 9, если сумма его цифр делится на 9. Признак делимости на 11: Число делится на 11, если разность сумм цифр, стоящих на чётных и нечётных местазх делится на 11.
Сумма цифр числа должна делиться на 9. В наименьшем числе количество цифр наименьшее, пробуем набрать сумму, кратную 9, наименьшим числом слагаемых.
1) Сумма 9 — нечётное число. Тогда среди сумм цифр, стоящих на чётном и нечётном местах, одна чётная сумма и одна нечётная, каждая сумма не превосходит 9, тогда и разность не превосходит 9. Ни одно нечётное натуральное число, не большее 9, не делится на 11, так что ни одно число не будет делиться на 11.
2) Сумма 18. Есть один вариант разбиения на две суммы, разность которых делится на 11: 18 = 9 + 9. На то, чтобы получить сумму 9, нужно не менее 5 цифр, причём подойдёт только один вариант 9 = 2 + 2 + 2 + 2 + 1. Так что если надо получить число, содержащее не больше 10 цифр, то на чётных местах и нечётных местах должны стоять по 4 двойки и одной единице. Чтобы число было наименьшим, единицы должны стоять раньше двоек. Получаем число 1122222222.
3) Сумма не меньше 27, тогда цифр нужно не меньше 14, поэтому все числа будут больше найденного.
1. Уравнение y=-x+4; найдём уравнение, параллельное этой прямой, проходящее через точку пересечения диагоналей:
в общем виде оно будет y=-x+C, C надо найти. 2=-5+C; C=7. Уравнение имеет вид y=-x+7.
2. Надеюсь, очевидно, что расстояние между прямыми равно 3, следовательно, половина стороны квадрата тоже равно 3, полная сторона равна 6.
3. Сделав схематичную картиночку, поймём, что вычисленная прямая находится выше данной стороны, т.е. чтобы найти вторую сторону квадрата (опять же параллельную данной), нужно поднять вычисленную прямую ещё на 3, т.е. y=-x+7+3; y=-x+10.
4. Непараллельные стороны квадрата перпендикулярны. Условие перпендикулярности прямых:
угловой коэффициент двух других сторон квадрата равен (-1)/(-1)=1.
Т.е. уравнения сторон имеют вид y=x+C. Найдём "центральную" сторону - ту, которая пересекается с другой "центральной" в точке пересечения диагоналей: y=x+C, 2=5+C, C=-3, y=x-3.
5. Для одной стороны прибавим, для другой вычтем 3:
y=x-3-3=x-6 и y=x-3+3=x, уравнения двух других сторон: y=x-6 и y=x.
6. Координаты вершин: 1)-x+10=x; 2x=10, x=5; y=5 (5;5); 2)-x+10=x-6, 2x=16, x=8, y=2 (8;2); 3)-x+4=x-6; 2x=10, x=5, y=-1 (5;-1); 4) -x+4=x, 2x=4, x=2, y=2 (2;2).
7. Найдём уравнение одной диагонали:
возьмём (5;5) и (5;-1). Очевидно, что это уравнение x=5. Но в общем случае пришлось бы подставлять в уравнение прямой x и y, решать систему двух уравнений относительно k и m. Для второй диагонали точки (8;2) и (2;2). y=2.
Как-то так.
Признак делимости на 9: Число делится на 9, если сумма его цифр делится на 9.
Признак делимости на 11: Число делится на 11, если разность сумм цифр, стоящих на чётных и нечётных местазх делится на 11.
Сумма цифр числа должна делиться на 9. В наименьшем числе количество цифр наименьшее, пробуем набрать сумму, кратную 9, наименьшим числом слагаемых.
1) Сумма 9 — нечётное число. Тогда среди сумм цифр, стоящих на чётном и нечётном местах, одна чётная сумма и одна нечётная, каждая сумма не превосходит 9, тогда и разность не превосходит 9. Ни одно нечётное натуральное число, не большее 9, не делится на 11, так что ни одно число не будет делиться на 11.
2) Сумма 18. Есть один вариант разбиения на две суммы, разность которых делится на 11: 18 = 9 + 9. На то, чтобы получить сумму 9, нужно не менее 5 цифр, причём подойдёт только один вариант 9 = 2 + 2 + 2 + 2 + 1. Так что если надо получить число, содержащее не больше 10 цифр, то на чётных местах и нечётных местах должны стоять по 4 двойки и одной единице. Чтобы число было наименьшим, единицы должны стоять раньше двоек. Получаем число 1122222222.
3) Сумма не меньше 27, тогда цифр нужно не меньше 14, поэтому все числа будут больше найденного.
ответ. 1122222222.