Длина окружности находится по формуле L=2ПR, R- радиус окружности. В окружность вписан правильный шестиугольник, который состоит из правильных треугольников. У правильного треугольника все стороны равны. Следовательно, основание треугольника равно радиусу вписанной окружности а=R. Площадь правильного треугольника S=V3a^2/4, а площадь правильного шестиугольника в 6 раз больше и равна S=3V3a^2/2. (значок V - обозначение корня квадратного)ю Подставим: 72V3= 3V3a^2/2, сократим на V3 и получим 72=3 a^2/2; 48=a^2 a= 4V3=R. L=2П*4V3=8V3П ответ: L=8V3П см
1)
данное уравнение имеет два различных корня.
по теореме Виета:
Т.к. произведение корней отрицательно, то два корня разных знаков: меньший - отрицательный, больший - положительный.
2)
уравнение имеет два различных корня.
по теореме Виета:
Т.к. произведение корней положительно, то имеет два корня одного знака, а т.к. сумма корней положительна, то имеет два положительных корня.
3)
уравнение имеет два различных корня. По т. Виета:
Т.к. произведение корней отрицательно, то имеет два корня различных знаков: меньший - отрицательный, больший - положительный.
4)
уравнение имеет два различных корня. По т. Виета:
Т.к. произведение корней отрицательно, то имеет два корня разных знаков: меньший - отрицательный, больший - положительный.
В окружность вписан правильный шестиугольник, который состоит из правильных треугольников. У правильного треугольника все стороны равны. Следовательно, основание треугольника равно радиусу вписанной окружности а=R. Площадь правильного треугольника S=V3a^2/4, а площадь правильного шестиугольника в 6 раз больше и равна S=3V3a^2/2. (значок V - обозначение корня квадратного)ю Подставим: 72V3= 3V3a^2/2, сократим на V3 и получим 72=3 a^2/2; 48=a^2 a= 4V3=R. L=2П*4V3=8V3П
ответ: L=8V3П см