Найдем значения Х, которые обращают подмодульные выражения в ноль: 1)x^2-2x-15=0 ОДЗ:6x-27>0;x>4,5 x1=-3; x2=5 2)x^2-8x+12=0 x1=-2; x2=6 Отметим эти точки на числовой прямой:
-3-256
Точки разбивают числовую ось на 5 промежутков. Рассмотрим каждый: 1)x<-3 Первое подмодульное выражение отрицательно на этом промежутке, и его мы раскроем со сменой знака. Второе - положительно. Его раскроем без смены знака: -x^2+2x+15+x^2-8x+12=6x-27 x=4,5 - число не принадлежит данному промежутку 2)-3<=x<-2 Подмодульные выражения мы раскроем также как и в первом случае и получим х=4,5. Этот корень также не принадлежит промежутку. 3)-2<=X<5 Оба подмодульных выражения отрицательны: -x^2+2x+15-x^2+8x-12=6x-27 x1=-3; x2=5 - оба корня не принадлежат рассматриваемому числовому промежутку 4)5<=x<6 x^2-2x-15-x^2+8x-12=6x-27 6x-27=6x-27 Это значит, что все числа этого промежутка являются корнями уравнения. 5)x>=6 x^2-2x-15+x^2-8x+12=6x-27 x1=2; x2=6 Только х=6 принадлежит промежутку. Итак, у нас получилось два целых корня: 5 и 6. Их произведение =30.
x+y=5 (1)
xy = -36 (2)
из (1) y=5-x, подставляем в (2) :
x(5-x) = -36
5x-x² = -36
x²-5x-36=0
D=25+144 =169 √D=13
x1=(5+13)/2=9 x2=(5-13)/2= -4
y1=5-9 = -4 y2=5-(-4) =5+4=9
ответ: (x=9 y = -4) ; ( x=-4 y=9)
2)
x²+y²=25 (1)
x+y= -1 (2) ---> y= -x-1 подставляем в (1)
x²+(-x-1)² =25
x²+x²+2x+1 = 25
2x²+2x-24=0
x²+x-12=0
D=1+48=49 √D=7
x1=(-1+7)/2=3 x2=(-1-7)/2=-4
y1=-3-1=-4 y2=-(-4)-1=4-1=3
ответ:
(x=3, y=-4); ( x=-4, y=3)
1)x^2-2x-15=0 ОДЗ:6x-27>0;x>4,5
x1=-3; x2=5
2)x^2-8x+12=0
x1=-2; x2=6
Отметим эти точки на числовой прямой:
-3-256
Точки разбивают числовую ось на 5 промежутков. Рассмотрим каждый:
1)x<-3
Первое подмодульное выражение отрицательно на этом промежутке, и его мы раскроем со сменой знака. Второе - положительно. Его раскроем без смены знака:
-x^2+2x+15+x^2-8x+12=6x-27
x=4,5 - число не принадлежит данному промежутку
2)-3<=x<-2
Подмодульные выражения мы раскроем также как и в первом случае и получим х=4,5. Этот корень также не принадлежит промежутку.
3)-2<=X<5
Оба подмодульных выражения отрицательны:
-x^2+2x+15-x^2+8x-12=6x-27
x1=-3; x2=5 - оба корня не принадлежат рассматриваемому числовому промежутку
4)5<=x<6
x^2-2x-15-x^2+8x-12=6x-27
6x-27=6x-27
Это значит, что все числа этого промежутка являются корнями уравнения.
5)x>=6
x^2-2x-15+x^2-8x+12=6x-27
x1=2; x2=6
Только х=6 принадлежит промежутку.
Итак, у нас получилось два целых корня: 5 и 6. Их произведение =30.