3.16. Найдите область определения функции и запишите ее вв виде числового промежутка: x +1 1) f(x) = x - 5 3х + 4 3) f(x) = ; 2x – 3 2х - 3; 1- x 4) f(x) = x +1 2) f(x) = x +1
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
Весь план они вдвоем выполнили за 4/0,9 = 40/9 дня. За 1 день они вдвоем выполняли по 9/40 части плана. 1 рабочий выполнит его за x дней, по 1/х части в день. 2 рабочий выполнит его за (x+2) дней, по 1/(х+2) части в день. 1/x + 1/(x+2) = 9/40 Умножаем все на 40x(x+2) 40(x+2) + 40x = 9x(x+2) 40x + 80 + 40x = 9x^2 + 18x 9x^2 - 62x - 80 = 0 D = 62^2 + 4*9*80 = 3844 + 2880 = 6724 = 82^2 x1 = (62 - 82)/18 = -10/18 < 0 x2 = (62 + 82)/18 = 144/18 = 8 x = 8 - за это время 1 рабочий сделает весь план. x+2 = 10 - за это время 2 рабочий сделает весь план.
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
За 1 день они вдвоем выполняли по 9/40 части плана.
1 рабочий выполнит его за x дней, по 1/х части в день.
2 рабочий выполнит его за (x+2) дней, по 1/(х+2) части в день.
1/x + 1/(x+2) = 9/40
Умножаем все на 40x(x+2)
40(x+2) + 40x = 9x(x+2)
40x + 80 + 40x = 9x^2 + 18x
9x^2 - 62x - 80 = 0
D = 62^2 + 4*9*80 = 3844 + 2880 = 6724 = 82^2
x1 = (62 - 82)/18 = -10/18 < 0
x2 = (62 + 82)/18 = 144/18 = 8
x = 8 - за это время 1 рабочий сделает весь план.
x+2 = 10 - за это время 2 рабочий сделает весь план.