912.
Сначало всё обозначим:
скорость лодки х ;
скорость лодки против чтения х-4 ;
время пути по реке 20/х-4 ;
время пути по озеру 14/х.
Разница между тем и другим временем 1 час по условию. Составляем уравнение:
20/х-4 - 14/х = 1
Приводим к общему знаменателю, перемножаем, получаем квадратное уравнение:
х^2 - 10х - 56 = 0
По формуле квадратных корней находим
х1 = - 4
отбрасываем, отрицательной скорости не бывает,
х2 = 14
принимаем, это собственная скорость лодки. Скорость лодки против течения 14 - 4 = 10 (км/ч)
914.
(знаки это дробь)
Так как скорость не может принимать отрицательное значение, следовательно искомый ответ : 40.
ответ : Токарь должен был обрабатывать 40 деталей в час по плану.
915.
Решение.
Пусть х изделий бригада должна была изготовить в 1 день по плану
(120/х) дней - бригада должна работать
(х+2) - изделия
Бригада изготовляла фактически в 1 день 120/(х+2) дней - бригада работала фактически.
А так как, по условию задачи, бригада закончила работу на 3 дня раньше срока, то составим уравнение:
120/х - 120/(х+2) = 3
120(х+2) - 120х = 3х(х+2)
120х+240 - 120х - 3х² - 6х = 0
3х² + 6х - 240 = 0
х² + 2х - 80 = 0
D = 4 + 4 × 1 × 80 = 324
x¹ = (-2 - 18)/2 = - 10 < 0 не удовлетворяет условию задачи
х² = (-2 + 18)/2 = 8
8 - изделий бригада рабочих изготовляла в 1 день по плану.
ответ : 8 изделий.
Нуу вроде всё)
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
912.
Сначало всё обозначим:
скорость лодки х ;
скорость лодки против чтения х-4 ;
время пути по реке 20/х-4 ;
время пути по озеру 14/х.
Разница между тем и другим временем 1 час по условию. Составляем уравнение:
20/х-4 - 14/х = 1
Приводим к общему знаменателю, перемножаем, получаем квадратное уравнение:
х^2 - 10х - 56 = 0
По формуле квадратных корней находим
х1 = - 4
отбрасываем, отрицательной скорости не бывает,
х2 = 14
принимаем, это собственная скорость лодки. Скорость лодки против течения 14 - 4 = 10 (км/ч)
914.
(знаки это дробь)
Так как скорость не может принимать отрицательное значение, следовательно искомый ответ : 40.
ответ : Токарь должен был обрабатывать 40 деталей в час по плану.
915.
Решение.
Пусть х изделий бригада должна была изготовить в 1 день по плану
(120/х) дней - бригада должна работать
(х+2) - изделия
Бригада изготовляла фактически в 1 день 120/(х+2) дней - бригада работала фактически.
А так как, по условию задачи, бригада закончила работу на 3 дня раньше срока, то составим уравнение:
120/х - 120/(х+2) = 3
120(х+2) - 120х = 3х(х+2)
120х+240 - 120х - 3х² - 6х = 0
3х² + 6х - 240 = 0
х² + 2х - 80 = 0
D = 4 + 4 × 1 × 80 = 324
x¹ = (-2 - 18)/2 = - 10 < 0 не удовлетворяет условию задачи
х² = (-2 + 18)/2 = 8
8 - изделий бригада рабочих изготовляла в 1 день по плану.
ответ : 8 изделий.
Нуу вроде всё)
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.