3.2. Напишите первые пять членов последовательности: 1
27
5
1) а = 2" +
2) х=3n?+2n+1;
2
если п
четное число,
n
3) а =
п – 1
если п
2
нечетное число;
n
2n - 1
4) с. 2n + 3
5) b =
2 + 2 + ... + 2
п корней
7) х = n+1-n:
1 1
+
6) ут
2 4
+.• •
1
+
2"
2
1
+ 2 ;
8) d, (-1)"
1 1
9) b=1 - +
3 9
1
+
27
(-1) -
+
3n-1
1) х - одна сторона прямоугольника
х - 3 - другая сторона прямоугольника
х · (х - 3) = 54 - площадь прямоугольника
х² - 3х - 54 = 0
D = 9 + 216 = 225
√D = 15
x₁ = 0.5 (3 - 15) = -6 (не подходит по физическому смыслу: длина не может быть отрицательной)
х₂ = 0,5(3 + 15) = 9 (см) - одна сторона
9 - 3 = 6 (см) - вторая сторона
Р = 2(9 + 6) = 30(см) - периметр прямоугольника
2)Введем переменную, пусть собственная скорость катера равна х, значит, по озеру катер шел со скоростью х км/ч. А по течению реки катер шел со скоростью (х + 3) км/ч.
Выразим время движения катера по течению реки: t = S/v; 5/(х + 3).
Выразим время движения катера по озеру: 8/х.
Так на все он потратил 1 час, составляем уравнение:
5/(х + 3) + 8/х = 1;
(5х + 8х + 24)/х(х + 3) = 1;
(13х + 24)/(х² + 3х) = 1.
По правилу пропорции: х² + 3х = 13х + 24;
х² + 3х - 13х - 24 = 0;
х² - 10х - 24 = 0.
D = 100 + 96 = 196 (√D = 14);
х1 = (10 - 14)/2 = -2 (не подходит).
х2 = (10 + 14)/2 = 12 (км/ч) - собственная скорость катера.
Тогда скорость по течению будет равна х + 3 = 12 + 3 = 15 (км/ч).
ответ: скорость катера по течению равна 15 км/ч.
Выделим полный квадрат из выражения
4m²+3mn+2n²=(4m²+3mn+9n²/16)+2n²-9n²/16=(2m+3n/4)²+23n²/16
Квадрат любого числа положителен или равен 0,сумма положительных положительна.Значит знаменатель дроби положителен⇒5/(4m²+3mn+2n²)>0
2
a)5x²+20x+15=5(x²+4x+3)
2x³+9x²+10x+3=x²(2x+1)+4x(2x+1)+3(2x+1)=(2x+1)(x²+4x+3)
(5x²+20x+15)/(2x³+9x²+10x+3)=5(x²+4x+3)/(2x+1)(x²+4x+3)=5/(2x+1)
b)(n^4-9n^3+12n^2+9n-13)/(n^4-10n^3+22n^2-13n) =
=[(n^4+n³)-(10n³-10n²)+(22n²+22n)_(13n+13)]/n(n³-10n²+22n-13)=
=[n³(n+1)-10n(n+1)+22n(n+1)-13(n+1)]/n(n³-10n²+22n-13)=
=(n+1)(n³-10n²+22n-13)/n(n³-10n²+22n-13)=(n+1)/n